//Go中文分词
package sego
import (
"bufio"
"fmt"
"log"
"math"
"os"
"strconv"
"strings"
"unicode"
"unicode/utf8"
)
const (
minTokenFrequency = 2 // 仅从字典文件中读取大于等于此频率的分词
)
// 分词器结构体
type Segmenter struct {
dict *Dictionary
}
// 该结构体用于记录Viterbi算法中某字元处的向前分词跳转信息
type jumper struct {
minDistance float32
token *Token
}
// 返回分词器使用的词典
func (seg *Segmenter) Dictionary() *Dictionary {
return seg.dict
}
// 从文件中载入词典
//
// 可以载入多个词典文件,文件名用","分隔,排在前面的词典优先载入分词,比如
// "用户词典.txt,通用词典.txt"
// 当一个分词既出现在用户词典也出现在通用词典中,则优先使用用户词典。
//
// 词典的格式为(每个分词一行):
// 分词文本 频率 词性
func (seg *Segmenter) LoadDictionary(files string) {
seg.dict = NewDictionary()
for _, file := range strings.Split(files, ",") {
log.Printf("载入sego词典 %s", file)
dictFile, err := os.Open(file)
defer dictFile.Close()
if err != nil {
log.Fatalf("无法载入字典文件 \"%s\" \n", file)
}
reader := bufio.NewReader(dictFile)
var text string
var freqText string
var frequency int
var pos string
// 逐行读入分词
for {
size, _ := fmt.Fscanln(reader, &text, &freqText, &pos)
if size == 0 {
// 文件结束
break
} else if size < 2 {
// 无效行
continue
} else if size == 2 {
// 没有词性标注时设为空字符串
pos = ""
}
// 解析词频
var err error
frequency, err = strconv.Atoi(freqText)
if err != nil {
continue
}
// 过滤频率太小的词
if frequency < minTokenFrequency {
continue
}
// 将分词添加到字典中
words := splitTextToWords([]byte(text))
token := Token{text: words, frequency: frequency, pos: pos}
seg.dict.addToken(token)
}
}
// 计算每个分词的路径值,路径值含义见Token结构体的注释
logTotalFrequency := float32(math.Log2(float64(seg.dict.totalFrequency)))
for i := range seg.dict.tokens {
token := &seg.dict.tokens[i]
token.distance = logTotalFrequency - float32(math.Log2(float64(token.frequency)))
}
// 对每个分词进行细致划分,用于搜索引擎模式,该模式用法见Token结构体的注释。
for i := range seg.dict.tokens {
token := &seg.dict.tokens[i]
segments := seg.segmentWords(token.text, true)
// 计算需要添加的子分词数目
numTokensToAdd := 0
for iToken := 0; iToken < len(segments); iToken++ {
if len(segments[iToken].token.text) > 1 {
// 略去字元长度为一的分词
// TODO: 这值得进一步推敲,特别是当字典中有英文复合词的时候
numTokensToAdd++
}
}
token.segments = make([]*Segment, numTokensToAdd)
// 添加子分词
iSegmentsToAdd := 0
for iToken := 0; iToken < len(segments); iToken++ {
if len(segments[iToken].token.text) > 1 {
token.segments[iSegmentsToAdd] = &segments[iToken]
iSegmentsToAdd++
}
}
}
log.Println("sego词典载入完毕")
}
// 对文本分词
//
// 输入参数:
// bytes UTF8文本的字节数组
//
// 输出:
// []Segment 划分的分词
func (seg *Segmenter) Segment(bytes []byte) []Segment {
return seg.internalSegment(bytes, false)
}
func (seg *Segmenter) internalSegment(bytes []byte, searchMode bool) []Segment {
// 处理特殊情况
if len(bytes) == 0 {
return []Segment{}
}
// 划分字元
text := splitTextToWords(bytes)
return seg.segmentWords(text, searchMode)
}
func (seg *Segmenter) segmentWords(text []Text, searchMode bool) []Segment {
// 搜索模式下该分词已无继续划分可能的情况
if searchMode && len(text) == 1 {
return []Segment{}
}
// jumpers定义了每个字元处的向前跳转信息,包括这个跳转对应的分词,
// 以及从文本段开始到该字元的最短路径值
jumpers := make([]jumper, len(text))
tokens := make([]*Token, seg.dict.maxTokenLength)
for current := 0; current < len(text); current++ {
// 找到前一个字元处的最短路径,以便计算后续路径值
var baseDistance float32
if current == 0 {
// 当本字元在文本首部时,基础距离应该是零
baseDistance = 0
} else {
baseDistance = jumpers[current-1].minDistance
}
// 寻找所有以当前字元开头的分词
numTokens := seg.dict.lookupTokens(
text[current:minInt(current+seg.dict.maxTokenLength, len(text))], tokens)
// 对所有可能的分词,更新分词结束字元处的跳转信息
for iToken := 0; iToken < numTokens; iToken++ {
location := current + len(tokens[iToken].text) - 1
if !searchMode || current != 0 || location != len(text)-1 {
updateJumper(&jumpers[location], baseDistance, tokens[iToken])
}
}
// 当前字元没有对应分词时补加一个伪分词
if numTokens == 0 || len(tokens[0].text) > 1 {
updateJumper(&jumpers[current], baseDistance,
&Token{text: []Text{text[current]}, frequency: 1, distance: 32, pos: "x"})
}
}
// 从后向前扫描第一遍得到需要添加的分词数目
numSeg := 0
for index := len(text) - 1; index >= 0; {
location := index - len(jumpers[index].token.text) + 1
numSeg++
index = location - 1
}
// 从后向前扫描第二遍添加分词到最终结果
outputSegments := make([]Segment, numSeg)
for index := len(text) - 1; index >= 0; {
location := index - len(jumpers[index].token.text) + 1
numSeg--
outputSegments[numSeg].token = jumpers[index].token
index = location - 1
}
// 计算各个分词的字节位置
bytePosition := 0
for iSeg := 0; iSeg < len(outputSegments); iSeg++ {
outputSegments[iSeg].start = bytePosition
bytePosition += textSliceByteLength(outputSegments[iSeg].token.text)
outputSegments[iSeg].end = bytePosition
}
return outputSegments
}
// 更新跳转信息:
// 1. 当该位置从未被访问过时(jumper.minDistance为零的情况),或者
// 2. 当该位置的当前最短路径大于新的最短路径时
// 将当前位置的最短路径值更新为baseDistance加上新分词的概率
func updateJumper(jumper *jumper, baseDistance float32, token *Token) {
newDistance := baseDistance + token.distance
if jumper.minDistance == 0 || jumper.minDistance > newDistance {
jumper.minDistance = newDistance
jumper.token = token
}
}
// 取两整数较小值
func minInt(a, b int) int {
if a > b {
return b
}
return a
}
// 取两整数较大值
func maxInt(a, b int) int {
if a > b {
return a
}
return b
}
// 将文本划分成字元
func splitTextToWords(text Text) []Text {
output := make([]Text, 0, len(text)/3)
current := 0
inAlphanumeric := true
alphanumericStart := 0
for current < len(text) {
r, size := utf8.DecodeRune(text[current:])
if size <= 2 && (unicode.IsLetter(r) || unicode.IsNumber(r)) {
// 当前是拉丁字母或数字(非中日韩文字)
if !inAlphanumeric {
alphanumericStart = current
inAlphanumeric = true
}
} else {
if inAlphanumeric {
inAlphanumeric = false
if current != 0 {
output = append(output, toLower(text[alphanumericStart:current]))
}
}
output = append(output, text[current:current+size])
}
current += size
}
// 处理最后一个字元是英文的情况
if inAlphanumeric {
if current != 0 {
output = append(output, toLower(text[alphanumericStart:current]))
}
}
return output
}
// 将英文词转化为小写
func toLower(text []byte) []byte {
output := make([]byte, len(text))
for i, t := range text {
if t >= 'A' && t <= 'Z' {
output[i] = t - 'A' + 'a'
} else {
output[i] = t
}
}
return output
}