本文实例为大家分享了pytorch实现线性回归以及多元回归的具体代码,供大家参考,具体内容如下
最近在学习pytorch,现在把学习的代码放在这里,下面是github链接
直接附上github代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
# 实现一个线性回归
# 所有的层结构和损失函数都来自于 torch.nn
# torch.optim 是一个实现各种优化算法的包,调用的时候必须是需要优化的参数传入,这些参数都必须是variable
x_train = np.array([[ 3.3 ],[ 4.4 ],[ 5.5 ],[ 6.71 ],[ 6.93 ],[ 4.168 ],[ 9.779 ],[ 6.182 ],[ 7.59 ],[ 2.167 ],[ 7.042 ],[ 10.791 ],[ 5.313 ],[ 7.997 ],[ 3.1 ]],dtype = np.float32)
y_train = np.array([[ 1.7 ],[ 2.76 ],[ 2.09 ],[ 3.19 ],[ 1.694 ],[ 1.573 ],[ 3.366 ],[ 2.596 ],[ 2.53 ],[ 1.221 ],[ 2.827 ],[ 3.465 ],[ 1.65 ],[ 2.904 ],[ 1.3 ]],dtype = np.float32)
# 首先我们需要将array转化成tensor,因为pytorch处理的单元是tensor
x_train = torch.from_numpy(x_train)
y_train = torch.from_numpy(y_train)
# def a simple network
class linearregression(nn.module):
def __init__( self ):
super (linearregression, self ).__init__()
self .linear = nn.linear( 1 , 1 ) # input and output is 2_dimension
def forward( self , x):
out = self .linear(x)
return out
if torch.cuda.is_available():
model = linearregression().cuda()
#model = model.cuda()
else :
model = linearregression()
#model = model.cuda()
# 定义loss function 和 optimize func
criterion = nn.mseloss() # 均方误差作为优化函数
optimizer = torch.optim.sgd(model.parameters(),lr = 1e - 3 )
num_epochs = 30000
for epoch in range (num_epochs):
if torch.cuda.is_available():
inputs = variable(x_train).cuda()
outputs = variable(y_train).cuda()
else :
inputs = variable(x_train)
outputs = variable(y_train)
# forward
out = model(inputs)
loss = criterion(out,outputs)
# backword
optimizer.zero_grad() # 每次做反向传播之前都要进行归零梯度。不然梯度会累加在一起,造成不收敛的结果
loss.backward()
optimizer.step()
if (epoch + 1 ) % 20 = = 0 :
print ( 'epoch[{}/{}], loss: {:.6f}' . format (epoch + 1 ,num_epochs,loss.data))
model. eval () # 将模型变成测试模式
predict = model(variable(x_train).cuda())
predict = predict.data.cpu().numpy()
plt.plot(x_train.numpy(),y_train.numpy(), 'ro' ,label = 'original data' )
plt.plot(x_train.numpy(),predict,label = 'fitting line' )
plt.show()
|
结果如图所示:
多元回归:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
# _*_encoding=utf-8_*_
# pytorch 里面最基本的操作对象是tensor,pytorch 的tensor可以和numpy的ndarray相互转化。
# 实现一个线性回归
# 所有的层结构和损失函数都来自于 torch.nn
# torch.optim 是一个实现各种优化算法的包,调用的时候必须是需要优化的参数传入,这些参数都必须是variable
# 实现 y = b + w1 *x + w2 *x**2 +w3*x**3
import os
os.environ[ 'cuda_device_order' ] = "pci_bus_id"
os.environ[ 'cuda_visible_devices' ] = '0'
import torch
import numpy as np
from torch.autograd import variable
import matplotlib.pyplot as plt
from torch import nn
# pre_processing
def make_feature(x):
x = x.unsqueeze( 1 ) # unsquenze 是为了添加维度1的,0表示第一维度,1表示第二维度,将tensor大小由3变为(3,1)
return torch.cat([x * * i for i in range ( 1 , 4 )], 1 )
# 定义好真实的数据
def f(x):
w_output = torch.tensor([ 0.5 , 3 , 2.4 ]).unsqueeze( 1 )
b_output = torch.tensor([ 0.9 ])
return x.mm(w_output) + b_output[ 0 ] # 外积,矩阵乘法
# 批量处理数据
def get_batch(batch_size = 32 ):
random = torch.randn(batch_size)
x = make_feature(random)
y = f(x)
if torch.cuda.is_available():
return variable(x).cuda(),variable(y).cuda()
else :
return variable(x),variable(y)
# def model
class poly_model(nn.module):
def __init__( self ):
super (poly_model, self ).__init__()
self .poly = nn.linear( 3 , 1 )
def forward( self , input ):
output = self .poly( input )
return output
if torch.cuda.is_available():
print ( "sdf" )
model = poly_model().cuda()
else :
model = poly_model()
# 定义损失函数和优化器
criterion = nn.mseloss()
optimizer = torch.optim.sgd(model.parameters(), lr = 1e - 3 )
epoch = 0
while true:
batch_x, batch_y = get_batch()
#print(batch_x)
output = model(batch_x)
loss = criterion(output,batch_y)
print_loss = loss.data
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch = epoch + 1
if print_loss < 1e - 3 :
print (print_loss)
break
model. eval ()
print ( "epoch = {}" . format (epoch))
batch_x, batch_y = get_batch()
predict = model(batch_x)
a = predict - batch_y
y = torch. sum (a)
print ( 'y = ' ,y)
predict = predict.data.cpu().numpy()
plt.plot(batch_x.cpu().numpy(),batch_y.cpu().numpy(), 'ro' ,label = 'original data' )
plt.plot(batch_x.cpu().numpy(),predict, 'b' , ls = '--' ,label = 'fitting line' )
plt.show()
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/weili_/article/details/82959756