一、原理
模拟水波纹效果,最常见的是sine或者cosn的函数,周期性变化,贴近自然。
当水波纹中中间开始向四周扩散的时候,一般都是慢慢的失去能量,振幅也是越来越小,所以程序要模拟这个过程时候,要加上一个能量递减因子。然后用公式 y = a*sine(bx + c)来表示波纹公式。
二、程序实现
最重要的一步是计算水波纹的振幅。在任意一点确定水波的中心位置,可以是鼠标随机选取,对半径范围内的像素位置实现水波生成,然后转换为位置,对位置实现浮点数取整,然后使用适当的插值算法,本例使用双线性插值。
三、程序效果
四、滤镜完全源代码
这次我写了些中文注解,不给源代码的博文不是好博文
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
package com.gloomyfish.filter.study;
import java.awt.image.bufferedimage;
public class waterfilter extends abstractbufferedimageop {
private float wavelength = 16 ;
private float amplitude = 10 ;
private float phase = 0 ;
private float centrex = 0 .5f;
private float centrey = 0 .5f;
private float radius = 50 ;
private float radius2 = 0 ;
private float icentrex;
private float icentrey;
public waterfilter() {
}
@override
public bufferedimage filter(bufferedimage src, bufferedimage dest) {
int width = src.getwidth();
int height = src.getheight();
if ( dest == null )
dest = createcompatibledestimage( src, null );
int [] inpixels = new int [width*height];
int [] outpixels = new int [width*height];
getrgb( src, 0 , 0 , width, height, inpixels );
icentrex = width * centrex;
icentrey = height * centrey;
if ( radius == 0 )
radius = math.min(icentrex, icentrey);
radius2 = radius*radius;
int index = 0 ;
float [] out = new float [ 2 ];
for ( int row= 0 ; row<height; row++) {
for ( int col= 0 ; col<width; col++) {
index = row * width + col;
// 获取水波的扩散位置,最重要的一步
generatewaterripples(col, row, out);
int srcx = ( int )math.floor( out[ 0 ] );
int srcy = ( int )math.floor( out[ 1 ] );
float xweight = out[ 0 ]-srcx;
float yweight = out[ 1 ]-srcy;
int nw, ne, sw, se;
// 获取周围四个像素,插值用,
if ( srcx >= 0 && srcx < width- 1 && srcy >= 0 && srcy < height- 1 ) {
// easy case, all corners are in the image
int i = width*srcy + srcx;
nw = inpixels[i];
ne = inpixels[i+ 1 ];
sw = inpixels[i+width];
se = inpixels[i+width+ 1 ];
} else {
// some of the corners are off the image
nw = getpixel( inpixels, srcx, srcy, width, height );
ne = getpixel( inpixels, srcx+ 1 , srcy, width, height );
sw = getpixel( inpixels, srcx, srcy+ 1 , width, height );
se = getpixel( inpixels, srcx+ 1 , srcy+ 1 , width, height );
}
// 取得对应的振幅位置p(x, y)的像素,使用双线性插值
/*if(xweight >=0 || yweight >= 0)
{
outpixels[index] = imagemath.bilinearinterpolate(xweight, yweight, nw, ne, sw, se);
}
else
{
outpixels[index] = inpixels[index];
}*/
outpixels[index] = imagemath.bilinearinterpolate(xweight, yweight, nw, ne, sw, se);
}
}
setrgb( dest, 0 , 0 , width, height, outpixels );
return dest;
}
private int getpixel( int [] pixels, int x, int y, int width, int height) {
if (x < 0 || x >= width || y < 0 || y >= height) {
return 0 ; // 有点暴力啦,懒得管啦
}
return pixels[ y*width+x ];
}
protected void generatewaterripples( int x, int y, float [] out) {
float dx = x-icentrex;
float dy = y-icentrey;
float distance2 = dx*dx + dy*dy;
// 确定 water ripple的半径,如果在半径之外,就直接获取原来位置,不用计算迁移量
if (distance2 > radius2) {
out[ 0 ] = x;
out[ 1 ] = y;
} else {
// 如果在radius半径之内,计算出来
float distance = ( float )math.sqrt(distance2);
// 计算改点振幅
float amount = amplitude * ( float )math.sin(distance / wavelength * imagemath.two_pi - phase);
// 计算能量损失,
amount *= (radius-distance)/radius; // 计算能量损失,
if ( distance != 0 )
amount *= wavelength/distance;
// 得到water ripple 最终迁移位置
out[ 0 ] = x + dx*amount;
out[ 1 ] = y + dy*amount;
}
}
}
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/jia20003/article/details/13159535