•问题提出
源表t_source结构如下:
1
2
3
4
5
|
item_id int ,
created_time datetime,
modified_time datetime,
item_name varchar (20),
other varchar (20)
|
要求:
1.源表中有100万条数据,其中有50万created_time和item_name重复。
2.要把去重后的50万数据写入到目标表。
3.重复created_time和item_name的多条数据,可以保留任意一条,不做规则限制。
•实验环境
Linux虚机:CentOS release 6.4;8G物理内存(MySQL配置4G);100G机械硬盘;双物理CPU双核,共四个处理器;MySQL 8.0.16。
•建立测试表和数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
-- 建立源表
create table t_source
( item_id int ,
created_time datetime,
modified_time datetime,
item_name varchar (20),
other varchar (20)
);
-- 建立目标表
create table t_target like t_source;
-- 生成100万测试数据,其中有50万created_time和item_name重复
delimiter //
create procedure sp_generate_data()
begin
set @i := 1;
while @i<=500000 do
set @created_time := date_add( '2017-01-01' ,interval @i second );
set @modified_time := @created_time;
set @item_name := concat( 'a' ,@i);
insert into t_source
values (@i,@created_time,@modified_time,@item_name, 'other' );
set @i:=@i+1;
end while;
commit ;
set @last_insert_id := 500000;
insert into t_source
select item_id + @last_insert_id,
created_time,
date_add(modified_time,interval @last_insert_id second ),
item_name,
'other'
from t_source;
commit ;
end
//
delimiter ;
call sp_generate_data();
-- 源表没有主键或唯一性约束,有可能存在两条完全一样的数据,所以再插入一条记录模拟这种情况。
insert into t_source select * from t_source where item_id=1;
源表中有1000001条记录,去重后的目标表应该有500000条记录。
mysql> select count (*), count ( distinct created_time,item_name) from t_source;
+ ----------+----------------------------------------+
| count (*) | count ( distinct created_time,item_name) |
+ ----------+----------------------------------------+
| 1000001 | 500000 |
+ ----------+----------------------------------------+
1 row in set (1.92 sec)
|
一、巧用索引与变量
1. 无索引对比测试
(1)使用相关子查询
1
2
3
4
|
truncate t_target;
insert into t_target
select distinct t1.* from t_source t1 where item_id in
( select min (item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name);
|
这个语句很长时间都出不来结果,只看一下执行计划吧。
1
2
3
4
5
6
7
8
9
|
mysql> explain select distinct t1.* from t_source t1 where item_id in
-> ( select min (item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name);
+ ----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+ ----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+
| 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | Using where ; Using temporary |
| 2 | DEPENDENT SUBQUERY | t2 | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 1.00 | Using where |
+ ----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+
2 rows in set , 3 warnings (0.00 sec)
|
主查询和相关子查询都是全表扫描,一共要扫描100万*100万数据行,难怪出不来结果。
(2)使用表连接
1
2
3
4
5
|
truncate t_target;
insert into t_target
select distinct t1.* from t_source t1,
( select min (item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2
where t1.item_id = t2.item_id;
|
这种方法用时14秒,查询计划如下:
1
2
3
4
5
6
7
8
9
|
mysql> explain select distinct t1.* from t_source t1, ( select min (item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2 where t1.item_id = t2.item_id;
+ ----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+ ----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
| 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | Using where ; Using temporary |
| 1 | PRIMARY | <derived2> | NULL | ref | <auto_key0> | <auto_key0> | 5 | test.t1.item_id | 10 | 100.00 | Distinct |
| 2 | DERIVED | t_source | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | Using temporary |
+ ----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
3 rows in set , 1 warning (0.00 sec)
|
•内层查询扫描t_source表的100万行,建立临时表,找出去重后的最小item_id,生成导出表derived2,此导出表有50万行。
•MySQL会在导出表derived2上自动创建一个item_id字段的索引auto_key0。
•外层查询也要扫描t_source表的100万行数据,在与导出表做链接时,对t_source表每行的item_id,使用auto_key0索引查找导出表中匹配的行,并在此时优化distinct操作,在找到第一个匹配的行后即停止查找同样值的动作。
(3)使用变量
1
2
3
4
5
6
7
8
9
10
|
set @a:= '1000-01-01 00:00:00' ;
set @b:= ' ' ;
set @f:=0;
truncate t_target;
insert into t_target
select item_id,created_time,modified_time,item_name,other
from
( select t0.*,if(@a=created_time and @b=item_name,@f:=0,@f:=1) f, @a:=created_time,@b:=item_name
from
( select * from t_source order by created_time,item_name) t0) t1 where f=1;
|
这种方法用时13秒,查询计划如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
mysql> explain select item_id,created_time,modified_time,item_name,other
-> from
-> ( select t0.*,if(@a=created_time and @b=item_name,@f:=0,@f:=1) f, @a:=created_time,@b:=item_name
-> from
-> ( select * from t_source order by created_time,item_name) t0) t1 where f=1;
+ ----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+ ----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
| 1 | PRIMARY | <derived2> | NULL | ref | <auto_key0> | <auto_key0> | 4 | const | 10 | 100.00 | NULL |
| 2 | DERIVED | <derived3> | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | NULL |
| 3 | DERIVED | t_source | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | Using filesort |
+ ----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
3 rows in set , 5 warnings (0.00 sec)
|
•最内层的查询扫描t_source表的100万行,并使用文件排序,生成导出表derived3。
•第二层查询要扫描derived3的100万行,生成导出表derived2,完成变量的比较和赋值,并自动创建一个导出列f上的索引auto_key0。
•最外层使用auto_key0索引扫描derived2得到去重的结果行。
与上面方法2比较,总的扫描行数不变,都是200万行。只存在一点微小的差别,这次自动生成的索引是在常量列 f 上,而表关联自动生成的索引是在item_id列上,所以查询时间几乎相同。
至此,我们还没有在源表上创建任何索引。无论使用哪种写法,要查重都需要对created_time和item_name字段进行排序,因此很自然地想到,如果在这两个字段上建立联合索引,利用索引本身有序的特性消除额外排序,从而提高查询性能。
2. 建立created_time和item_name上的联合索引对比测试
1
2
3
|
-- 建立created_time和item_name字段的联合索引
create index idx_sort on t_source(created_time,item_name,item_id);
analyze table t_source;
|
(1)使用相关子查询
1
2
3
4
|
truncate t_target;
insert into t_target
select distinct t1.* from t_source t1 where item_id in
( select min (item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name);
|
本次用时19秒,查询计划如下:
1
2
3
4
5
6
7
8
9
|
mysql> explain select distinct t1.* from t_source t1 where item_id in
-> ( select min (item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name);
+ ----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+ ----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+
| 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 997281 | 100.00 | Using where ; Using temporary |
| 2 | DEPENDENT SUBQUERY | t2 | NULL | ref | idx_sort | idx_sort | 89 | test.t1.created_time,test.t1.item_name | 2 | 100.00 | Using index |
+ ----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+
2 rows in set , 3 warnings (0.00 sec)
|
•外层查询的t_source表是驱动表,需要扫描100万行。
•对于驱动表每行的item_id,通过idx_sort索引查询出两行数据。
(2)使用表连接
1
2
3
4
5
|
truncate t_target;
insert into t_target
select distinct t1.* from t_source t1,
( select min (item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2
where t1.item_id = t2.item_id;
|
本次用时13秒,查询计划如下:
1
2
3
4
5
6
7
8
9
10
11
|
mysql> explain select distinct t1.* from t_source t1,
-> ( select min (item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2
-> where t1.item_id = t2.item_id;
+ ----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+ ----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
| 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 997281 | 100.00 | Using where ; Using temporary |
| 1 | PRIMARY | <derived2> | NULL | ref | <auto_key0> | <auto_key0> | 5 | test.t1.item_id | 10 | 100.00 | Distinct |
| 2 | DERIVED | t_source | NULL | index | idx_sort | idx_sort | 94 | NULL | 997281 | 100.00 | Using index |
+ ----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
3 rows in set , 1 warning (0.00 sec)
|
和没有索引相比,子查询虽然从全表扫描变为了全索引扫描,但还是需要扫描100万行记录。因此查询性能提升并不是明显。
(3)使用变量
1
2
3
4
5
6
7
8
9
10
|
set @a:= '1000-01-01 00:00:00' ;
set @b:= ' ' ;
set @f:=0;
truncate t_target;
insert into t_target
select item_id,created_time,modified_time,item_name,other
from
( select t0.*,if(@a=created_time and @b=item_name,@f:=0,@f:=1) f, @a:=created_time,@b:=item_name
from
( select * from t_source order by created_time,item_name) t0) t1 where f=1;
|
本次用时13秒,查询计划与没有索引时的完全相同。可见索引对这种写法没有作用。能不能消除嵌套,只用一层查询出结果呢?
(4)使用变量,并且消除嵌套查询
1
2
3
4
5
6
7
|
set @a:= '1000-01-01 00:00:00' ;
set @b:= ' ' ;
truncate t_target;
insert into t_target
select * from t_source force index (idx_sort)
where (@a!=created_time or @b!=item_name) and (@a:=created_time) is not null and (@b:=item_name) is not null
order by created_time,item_name;
|
本次用时12秒,查询计划如下:
1
2
3
4
5
6
7
8
9
|
mysql> explain select * from t_source force index (idx_sort)
-> where (@a!=created_time or @b!=item_name) and (@a:=created_time) is not null and (@b:=item_name) is not null
-> order by created_time,item_name;
+ ----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+ ----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+
| 1 | SIMPLE | t_source | NULL | index | NULL | idx_sort | 94 | NULL | 997281 | 99.00 | Using where |
+ ----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+
1 row in set , 3 warnings (0.00 sec)
|
该语句具有以下特点:
•消除了嵌套子查询,只需要对t_source表进行一次全索引扫描,查询计划已达最优。
•无需distinct二次查重。
•变量判断与赋值只出现在where子句中。
•利用索引消除了filesort。
在MySQL 8之前,该语句是单线程去重的最佳解决方案。仔细分析这条语句,发现它巧妙地利用了SQL语句的逻辑查询处理步骤和索引特性。一条SQL查询的逻辑步骤为:
1.执行笛卡尔乘积(交叉连接)
2.应用ON筛选器(连接条件)
3.添加外部行(outer join)
4.应用where筛选器
5.分组
6.应用cube或rollup
7.应用having筛选器
8.处理select列表
9.应用distinct子句
10.应用order by子句
11.应用limit子句
每条查询语句的逻辑执行步骤都是这11步的子集。拿这条查询语句来说,其执行顺序为:强制通过索引idx_sort查找数据行 -> 应用where筛选器 -> 处理select列表 -> 应用order by子句。
为了使变量能够按照created_time和item_name的排序顺序进行赋值和比较,必须按照索引顺序查找数据行。这里的force index (idx_sort)提示就起到了这个作用,必须这样写才能使整条查重语句成立。否则,因为先扫描表才处理排序,因此不能保证变量赋值的顺序,也就不能确保查询结果的正确性。order by子句同样不可忽略,否则即使有force index提示,MySQL也会使用全表扫描而不是全索引扫描,从而使结果错误。索引同时保证了created_time,item_name的顺序,避免了文件排序。force index (idx_sort)
提示和order by子句缺一不可,索引idx_sort在这里可谓恰到好处、一举两得。
查询语句开始前,先给变量初始化为数据中不可能出现的值,然后进入where子句从左向右判断。先比较变量和字段的值,再将本行created_time和item_name的值赋给变量,按created_time、item_name的顺序逐行处理。item_name是字符串类型,(@b:=item_name)不是有效的布尔表达式,因此要写成(@b:=item_name) is not null。
最后补充一句,这里忽略了“insert into t_target select * from t_source group by created_time,item_name
;”的写法,因为它受“sql_mode='ONLY_FULL_GROUP_BY'
”的限制。
二、利用窗口函数
MySQL 8中新增的窗口函数使得原来麻烦的去重操作变得很简单。
1
2
3
4
5
|
truncate t_target;
insert into t_target
select item_id, created_time, modified_time, item_name, other
from ( select *, row_number() over(partition by created_time,item_name) as rn
from t_source) t where rn=1;
|
这个语句执行只需要12秒,而且写法清晰易懂,其查询计划如下:
1
2
3
4
5
6
7
8
9
10
|
mysql> explain select item_id, created_time, modified_time, item_name, other
-> from ( select *, row_number() over(partition by created_time,item_name) as rn
-> from t_source) t where rn=1;
+ ----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+ ----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
| 1 | PRIMARY | <derived2> | NULL | ref | <auto_key0> | <auto_key0> | 8 | const | 10 | 100.00 | NULL |
| 2 | DERIVED | t_source | NULL | ALL | NULL | NULL | NULL | NULL | 997281 | 100.00 | Using filesort |
+ ----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
2 rows in set , 2 warnings (0.00 sec)
|
该查询对t_source表进行了一次全表扫描,同时用filesort对表按分区字段created_time、item_name进行了排序。外层查询从每个分区中保留一条数据。因为重复created_time
和item_name
的多条数据中可以保留任意一条,所以oevr中不需要使用order by子句。
从执行计划看,窗口函数去重语句似乎没有消除嵌套查询的变量去重好,但此方法实际执行是最快的。
MySQL窗口函数说明参见“https://dev.mysql.com/doc/refman/8.0/en/window-functions.html”。
三、多线程并行执行
前面已经将单条查重语句调整到最优,但还是以单线程方式执行。能否利用多处理器,让去重操作多线程并行执行,从而进一步提高速度呢?比如我的实验环境是4处理器,如果使用4个线程同时执行查重SQL,理论上应该接近4倍的性能提升。
1. 数据分片
在生成测试数据时,created_time采用每条记录加一秒的方式,也就是最大和在最小的时间差为50万秒,而且数据均匀分布,因此先把数据平均分成4份。
(1)查询出4份数据的created_time边界值
1
2
3
4
5
6
7
8
9
10
11
|
mysql> select date_add( '2017-01-01' ,interval 125000 second ) dt1,
-> date_add( '2017-01-01' ,interval 2*125000 second ) dt2,
-> date_add( '2017-01-01' ,interval 3*125000 second ) dt3,
-> max (created_time) dt4
-> from t_source;
+ ---------------------+---------------------+---------------------+---------------------+
| dt1 | dt2 | dt3 | dt4 |
+ ---------------------+---------------------+---------------------+---------------------+
| 2017-01-02 10:43:20 | 2017-01-03 21:26:40 | 2017-01-05 08:10:00 | 2017-01-06 18:53:20 |
+ ---------------------+---------------------+---------------------+---------------------+
1 row in set (0.00 sec)
|
(2)查看每份数据的记录数,确认数据平均分布
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
mysql> select case when created_time >= '2017-01-01'
-> and created_time < '2017-01-02 10:43:20'
-> then '2017-01-01'
-> when created_time >= '2017-01-02 10:43:20'
-> and created_time < '2017-01-03 21:26:40'
-> then '2017-01-02 10:43:20'
-> when created_time >= '2017-01-03 21:26:40'
-> and created_time < '2017-01-05 08:10:00'
-> then '2017-01-03 21:26:40'
-> else '2017-01-05 08:10:00'
-> end min_dt,
-> case when created_time >= '2017-01-01'
-> and created_time < '2017-01-02 10:43:20'
-> then '2017-01-02 10:43:20'
-> when created_time >= '2017-01-02 10:43:20'
-> and created_time < '2017-01-03 21:26:40'
-> then '2017-01-03 21:26:40'
-> when created_time >= '2017-01-03 21:26:40'
-> and created_time < '2017-01-05 08:10:00'
-> then '2017-01-05 08:10:00'
-> else '2017-01-06 18:53:20'
-> end max_dt,
-> count (*)
-> from t_source
-> group by case when created_time >= '2017-01-01'
-> and created_time < '2017-01-02 10:43:20'
-> then '2017-01-01'
-> when created_time >= '2017-01-02 10:43:20'
-> and created_time < '2017-01-03 21:26:40'
-> then '2017-01-02 10:43:20'
-> when created_time >= '2017-01-03 21:26:40'
-> and created_time < '2017-01-05 08:10:00'
-> then '2017-01-03 21:26:40'
-> else '2017-01-05 08:10:00'
-> end ,
-> case when created_time >= '2017-01-01'
-> and created_time < '2017-01-02 10:43:20'
-> then '2017-01-02 10:43:20'
-> when created_time >= '2017-01-02 10:43:20'
-> and created_time < '2017-01-03 21:26:40'
-> then '2017-01-03 21:26:40'
-> when created_time >= '2017-01-03 21:26:40'
-> and created_time < '2017-01-05 08:10:00'
-> then '2017-01-05 08:10:00'
-> else '2017-01-06 18:53:20'
-> end ;
+ ---------------------+---------------------+----------+
| min_dt | max_dt | count (*) |
+ ---------------------+---------------------+----------+
| 2017-01-01 | 2017-01-02 10:43:20 | 249999 |
| 2017-01-02 10:43:20 | 2017-01-03 21:26:40 | 250000 |
| 2017-01-03 21:26:40 | 2017-01-05 08:10:00 | 250000 |
| 2017-01-05 08:10:00 | 2017-01-06 18:53:20 | 250002 |
+ ---------------------+---------------------+----------+
4 rows in set (4.86 sec)
|
4份数据的并集应该覆盖整个源数据集,并且数据之间是不重复的。也就是说4份数据的created_time要连续且互斥,连续保证处理全部数据,互斥确保了不需要二次查重。实际上这和时间范围分区的概念类似,或许用分区表更好些,只是这里省略了重建表的步骤。
2. 建立查重的存储过程
有了以上信息我们就可以写出4条语句处理全部数据。为了调用接口尽量简单,建立下面的存储过程。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
delimiter //
create procedure sp_unique(i smallint )
begin
set @a:= '1000-01-01 00:00:00' ;
set @b:= ' ' ;
if (i<4) then
insert into t_target
select * from t_source force index (idx_sort)
where created_time >= date_add( '2017-01-01' ,interval (i-1)*125000 second )
and created_time < date_add( '2017-01-01' ,interval i*125000 second )
and (@a!=created_time or @b!=item_name)
and (@a:=created_time) is not null
and (@b:=item_name) is not null
order by created_time,item_name;
else
insert into t_target
select * from t_source force index (idx_sort)
where created_time >= date_add( '2017-01-01' ,interval (i-1)*125000 second )
and created_time <= date_add( '2017-01-01' ,interval i*125000 second )
and (@a!=created_time or @b!=item_name)
and (@a:=created_time) is not null
and (@b:=item_name) is not null
order by created_time,item_name;
end if;
end
//
|
查询语句的执行计划如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
mysql> explain select * from t_source force index (idx_sort)
-> where created_time >= date_add( '2017-01-01' ,interval (1-1)*125000 second )
-> and created_time < date_add( '2017-01-01' ,interval 1*125000 second )
-> and (@a!=created_time or @b!=item_name)
-> and (@a:=created_time) is not null
-> and (@b:=item_name) is not null
-> order by created_time,item_name;
+ ----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+ ----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+
| 1 | SIMPLE | t_source | NULL | range | idx_sort | idx_sort | 6 | NULL | 498640 | 100.00 | Using index condition |
+ ----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+
1 row in set , 3 warnings (0.00 sec)
|
MySQL优化器进行索引范围扫描,并且使用索引条件下推(ICP)优化查询。
3. 并行执行
下面分别使用shell后台进程和MySQL Schedule Event实现并行。
(1)shell后台进程
•建立duplicate_removal.sh文件,内容如下:
1
2
3
4
5
6
7
8
9
10
|
#!/bin/bash
mysql -vvv -u root -p123456 test -e "truncate t_target" &>/dev/ null
date '+%H:%M:%S'
for y in {1..4}
do
sql= "call sp_unique($y)"
mysql -vvv -u root -p123456 test -e "$sql" &>par_sql1_$y.log &
done
wait
date '+%H:%M:%S'
|
•执行脚本文件
./duplicate_removal.sh
执行输出如下:
1
2
3
|
[mysql@hdp2~]$./duplicate_removal.sh
14:27:30
14:27:35
|
这种方法用时5秒,并行执行的4个过程调用分别用时为4.87秒、4.88秒、4.91秒、4.73秒:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
[mysql@hdp2~]$cat par_sql1_1.log | sed '/^$/d'
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
call sp_unique(1)
--------------
Query OK, 124999 rows affected (4.87 sec)
Bye
[mysql@hdp2~]$cat par_sql1_2.log | sed '/^$/d'
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
call sp_unique(2)
--------------
Query OK, 125000 rows affected (4.88 sec)
Bye
[mysql@hdp2~]$cat par_sql1_3.log | sed '/^$/d'
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
call sp_unique(3)
--------------
Query OK, 125000 rows affected (4.91 sec)
Bye
[mysql@hdp2~]$cat par_sql1_4.log | sed '/^$/d'
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
call sp_unique(4)
--------------
Query OK, 125001 rows affected (4.73 sec)
Bye
[mysql@hdp2~]$
|
可以看到,每个过程的执行时间均4.85,因为是并行执行,总的过程执行时间为最慢的4.91秒,比单线程速度提高了2.5倍。
(2)MySQL Schedule Event
•建立事件历史日志表
1
2
3
4
5
6
7
8
9
10
11
|
-- 用于查看事件执行时间等信息
create table t_event_history (
dbname varchar (128) not null default '' ,
eventname varchar (128) not null default '' ,
starttime datetime(3) not null default '1000-01-01 00:00:00' ,
endtime datetime(3) default null ,
issuccess int (11) default null ,
duration int (11) default null ,
errormessage varchar (512) default null ,
randno int (11) default null
);
|
•为每个并发线程创建一个事件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
delimiter //
create event ev1 on schedule at current_timestamp + interval 1 hour on completion preserve disable do
begin
declare r_code char (5) default '00000' ;
declare r_msg text;
declare v_error integer ;
declare v_starttime datetime default now(3);
declare v_randno integer default floor(rand()*100001);
insert into t_event_history (dbname,eventname,starttime,randno)
#作业名
values ( database (), 'ev1' , v_starttime,v_randno);
begin
#异常处理段
declare continue handler for sqlexception
begin
set v_error = 1;
get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text;
end ;
#此处为实际调用的用户程序过程
call sp_unique(1);
end ;
update t_event_history set endtime=now(3),issuccess= isnull (v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat( 'error=' ,r_code, ', message=' ,r_msg),randno= null where starttime=v_starttime and randno=v_randno;
end
//
create event ev2 on schedule at current_timestamp + interval 1 hour on completion preserve disable do
begin
declare r_code char (5) default '00000' ;
declare r_msg text;
declare v_error integer ;
declare v_starttime datetime default now(3);
declare v_randno integer default floor(rand()*100001);
insert into t_event_history (dbname,eventname,starttime,randno)
#作业名
values ( database (), 'ev2' , v_starttime,v_randno);
begin
#异常处理段
declare continue handler for sqlexception
begin
set v_error = 1;
get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text;
end ;
#此处为实际调用的用户程序过程
call sp_unique(2);
end ;
update t_event_history set endtime=now(3),issuccess= isnull (v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat( 'error=' ,r_code, ', message=' ,r_msg),randno= null where starttime=v_starttime and randno=v_randno;
end
//
create event ev3 on schedule at current_timestamp + interval 1 hour on completion preserve disable do
begin
declare r_code char (5) default '00000' ;
declare r_msg text;
declare v_error integer ;
declare v_starttime datetime default now(3);
declare v_randno integer default floor(rand()*100001);
insert into t_event_history (dbname,eventname,starttime,randno)
#作业名
values ( database (), 'ev3' , v_starttime,v_randno);
begin
#异常处理段
declare continue handler for sqlexception
begin
set v_error = 1;
get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text;
end ;
#此处为实际调用的用户程序过程
call sp_unique(3);
end ;
update t_event_history set endtime=now(3),issuccess= isnull (v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat( 'error=' ,r_code, ', message=' ,r_msg),randno= null where starttime=v_starttime and randno=v_randno;
end
//
create event ev4 on schedule at current_timestamp + interval 1 hour on completion preserve disable do
begin
declare r_code char (5) default '00000' ;
declare r_msg text;
declare v_error integer ;
declare v_starttime datetime default now(3);
declare v_randno integer default floor(rand()*100001);
insert into t_event_history (dbname,eventname,starttime,randno)
#作业名
values ( database (), 'ev4' , v_starttime,v_randno);
begin
#异常处理段
declare continue handler for sqlexception
begin
set v_error = 1;
get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text;
end ;
#此处为实际调用的用户程序过程
call sp_unique(4);
end ;
update t_event_history set endtime=now(3),issuccess= isnull (v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat( 'error=' ,r_code, ', message=' ,r_msg),randno= null where starttime=v_starttime and randno=v_randno;
end
//
|
为了记录每个事件执行的时间,在事件定义中增加了操作日志表的逻辑,因为每个事件中只多执行了一条insert,一条update,4个事件总共多执行8条很简单的语句,对测试的影响可以忽略不计。执行时间精确到毫秒。
•触发事件执行
1
|
mysql -vvv -u root -p123456 test -e "truncate t_target;alter event ev1 on schedule at current_timestamp enable;alter event ev2 on schedule at current_timestamp enable;alter event ev3 on schedule at current_timestamp enable;alter event ev4 on schedule at current_timestamp enable;"
|
该命令行顺序触发了4个事件,但不会等前一个执行完才执行下一个,而是立即向下执行。这可从命令的输出可以清除看到:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
[mysql@hdp2~]$mysql -vvv -u root -p123456 test -e "truncate t_target;alter event ev1 on schedule at current_timestamp enable;alter event ev2 on schedule at current_timestamp enable;alter event ev3 on schedule at current_timestamp enable;alter event ev4 on schedule at current_timestamp enable;"
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
truncate t_target
--------------
Query OK, 0 rows affected (0.06 sec)
--------------
alter event ev1 on schedule at current_timestamp enable
--------------
Query OK, 0 rows affected (0.02 sec)
--------------
alter event ev2 on schedule at current_timestamp enable
--------------
Query OK, 0 rows affected (0.00 sec)
--------------
alter event ev3 on schedule at current_timestamp enable
--------------
Query OK, 0 rows affected (0.02 sec)
--------------
alter event ev4 on schedule at current_timestamp enable
--------------
Query OK, 0 rows affected (0.00 sec)
Bye
[mysql@hdp2~]$
|
•查看事件执行日志
1
2
3
4
5
6
7
8
9
10
|
mysql> select * from test.t_event_history;
+ --------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+
| dbname | eventname | starttime | endtime | issuccess | duration | errormessage | randno |
+ --------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+
| test | ev1 | 2019-07-31 14:38:04.000 | 2019-07-31 14:38:09.389 | 1 | 5389000 | NULL | NULL |
| test | ev2 | 2019-07-31 14:38:04.000 | 2019-07-31 14:38:09.344 | 1 | 5344000 | NULL | NULL |
| test | ev3 | 2019-07-31 14:38:05.000 | 2019-07-31 14:38:09.230 | 1 | 4230000 | NULL | NULL |
| test | ev4 | 2019-07-31 14:38:05.000 | 2019-07-31 14:38:09.344 | 1 | 4344000 | NULL | NULL |
+ --------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+
4 rows in set (0.00 sec)
|
可以看到,每个过程的执行均为4.83秒,又因为是并行执行的,因此总的执行之间为最慢的5.3秒,优化效果和shell后台进程方式几乎相同。
总结
以上所述是小编给大家介绍的将MySQL去重操作优化到极致的操作方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对服务器之家网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!
原文链接:https://blog.csdn.net/wzy0623/article/details/97918038