在python数据分析中,有时需要根据多列数据生成中间结果,pandas给我们带来了很多方便,通常简短的代码可以实现一些高级功能,灵活掌握一些技巧可以事倍功半
pandas的apply方法用于对指定列的每个元素进行相同的操作,下面生成一个dataFrame用于演示:
1
2
3
4
5
6
7
|
import pandas as pd
a = range ( 5 )
b = range ( 5 , 10 )
c = range ( 10 , 15 )
data = pd.DataFrame([a,b,c]).T
data.columns = [ "a" , "b" , "c" ]
print (data)
|
上面的代码生成的数据如下:
a b c
0 0 5 10
1 1 6 11
2 2 7 12
3 3 8 13
4 4 9 14
下面使用使用a,b两列相加生成x1列
1
|
data[ "x1" ] = data[[ "a" , "b" ]]. apply ( lambda x:x[ "a" ] + x[ "b" ],axis = 1 )
|
结果如下:
a b c x1
0 0 5 10 5
1 1 6 11 7
2 2 7 12 9
3 3 8 13 11
4 4 9 14 13
关键的参数是axis=1,指定计算的方向是行而不是列,默认是0,也就是按列进行计算
到此这篇关于pandas apply使用多列计算生成新的列实现示例的文章就介绍到这了,更多相关pandas apply多列计算生成新的列内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!
原文链接:https://blog.csdn.net/wolf1132/article/details/90543863