The aim of the game is, starting from any initial set of
lights on in the display, to press buttons to get the display to a state
where all lights are off. When adjacent buttons are pressed, the action
of one button can undo the effect of another. For instance, in the
display below, pressing buttons marked X in the left display results in
the right display.Note that the buttons in row 2 column 3 and row 2
column 5 both change the state of the button in row 2 column 4,so that,
in the end, its state is unchanged.
Note:
1. It does not matter what order the buttons are pressed.
2. If a button is pressed a second time, it exactly cancels
the effect of the first press, so no button ever need be pressed more
than once.
3. As illustrated in the second diagram, all the lights in
the first row may be turned off, by pressing the corresponding buttons
in the second row. By repeating this process in each row, all the lights
in the first
four rows may be turned out. Similarly, by pressing buttons
in columns 2, 3 ?, all lights in the first 5 columns may be turned off.
Write a program to solve the puzzle.
Input
number of puzzles that follow. Each puzzle will be five lines, each of
which has six 0 or 1 separated by one or more spaces. A 0 indicates that
the light is off, while a 1 indicates that the light is on initially.
Output
"PUZZLE #m", where m is the index of the puzzle in the input file.
Following that line, is a puzzle-like display (in the same format as the
input) . In this case, 1's indicate buttons that must be pressed to
solve the puzzle, while 0 indicate buttons, which are not pressed. There
should be exactly one space between each 0 or 1 in the output
puzzle-like display.
Sample Input
2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0
Sample Output
PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1 大佬博客 : https://blog.csdn.net/FromATP/article/details/53966305
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std;
typedef long long lint;
const double PI = acos(-1.0);
const int INF = ;
const int maxn = ; // 暴力枚举 :
/*
int mp[20][20], cal[20][20], vis[20][20];
int n, m;
int dr[5][2] = { {0,1}, {0,-1}, {1,0}, {-1,0}, {0,0} };
int mi = INF; int fz(int x, int y)
{
int t = mp[x][y];
for(int i = 0; i< 5; i++)
{
int xx = x + dr[i][0];
int yy = y + dr[i][1];
if(xx <= n && xx > 0 && yy <= m && yy >0)
t += vis[xx][yy];
}
return t%2;
} int dfs()
{ for(int j = 2; j <= n; j++)
for(int k = 1; k <= m; k++)
{
if(fz(j-1, k)) vis[j][k] = 1;
}
for(int j = 1; j <= m; j++)
{
if(fz(n, j))
return -1;
}
int cnt = 0;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
cnt += vis[i][j];
return cnt; } int main()
{
ios::sync_with_stdio(false);
int T;
cin >> T;
int ans = 0;
while(ans++ < T)
{
mi = INF;
n = 5;
m = 6;
for(int i = 1; i <=n; i++)
for(int j = 1; j <=m ; j++)
cin >> mp[i][j];
int flag = 0;
for(int i = 0; i < 1<<m ; i++)
{
memset(vis, 0, sizeof(vis));
for(int j = 1; j <= m; j++)
vis[1][m-j+1] = i>>(j-1) & 1; int cnt = dfs();
if(cnt < mi && cnt >= 0)
{
flag =1;
mi = cnt;
memcpy(cal, vis, sizeof(vis));
} }
cout << "PUZZLE #" << ans << endl;
if(flag)
{
for(int i = 1; i <=n; i++)
{
for(int j = 1; j <= m; j++)
{
if(j != 1) cout << " ";
cout << cal[i][j];
} cout << endl;
}
} else cout << "IMPOSSIBLE" << endl;
} return 0;
}
*/
// 高斯消元法 : #include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int n=;
int tt,a[n+][n+];
void gauss()//保证有解
{
int r;
for(int i=;i<=n;i++)
{
for(int j=i;j<=n;j++)if(a[j][i]){r=j;break;}
if(r!=i)for(int j=;j<=n+;j++) swap(a[i][j],a[r][j]);
for(int j=i+;j<=n;j++)if(a[j][i])
for(int k=i;k<=n+;k++)
a[j][k]^=a[i][k];
}
for(int i=n;i>=;i--)
for(int j=i+;j<=n;j++)
if(a[i][j])a[i][n+]^=a[j][n+];
}
int main()
{
scanf("%d",&tt);
int t=;
while(tt--)
{
t++;
memset(a,,sizeof(a));
for(int i=;i<=n;i++)
{
scanf("%d",&a[i][n+]);
a[i][i]=;
if(i%!=)a[i][i-]=;
if(i%!=)a[i][i+]=;
if(i>)a[i][i-]=;
if(i<)a[i][i+]=;
}
gauss();
printf("PUZZLE #%d\n",t);
for(int i=;i<=n;i++)
{
if(!(i%))printf("%d\n",a[i][n+]);
else printf("%d ",a[i][n+]);
}
}
return ;
}
EXTENDED LIGHTS OUT (高斯消元)的更多相关文章
-
poj1222 EXTENDED LIGHTS OUT 高斯消元||枚举
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8481 Accepted: 5479 Description In an ...
-
POJ 1222 EXTENDED LIGHTS OUT (高斯消元)
题目链接 题意:5*6矩阵中有30个灯,操作一个灯,周围的上下左右四个灯会发生相应变化 即由灭变亮,由亮变灭,如何操作使灯全灭? 题解:这个问题是很经典的高斯消元问题.同一个按钮最多只能被按一次,因为 ...
-
POJ1222 EXTENDED LIGHTS OUT 高斯消元 XOR方程组
http://poj.org/problem?id=1222 在学校oj用搜索写了一次,这次写高斯消元,haoi现场裸xor方程消元没写出来,真实zz. #include<iostream> ...
-
[poj1222]EXTENDED LIGHTS OUT(高斯消元)
题意:每个灯开启会使自身和周围的灯反转,要使全图的灯灭掉,判断灯开的位置. 解题关键:二进制高斯消元模板题. 复杂度:$O({n^3})$ #include<cstdio> #includ ...
-
POJ 1222 EXTENDED LIGHTS OUT [高斯消元XOR]
题意: $5*6$网格里有一些灯告诉你一开始开关状态,按一盏灯会改变它及其上下左右的状态,问最后全熄灭需要按那些灯,保证有解 经典问题 一盏灯最多会被按一次,并且有很明显的异或性质 一个灯作为一个方程 ...
-
BZOJ 1770: [Usaco2009 Nov]lights 燈( 高斯消元 )
高斯消元解xor方程组...暴搜*元+最优性剪枝 -------------------------------------------------------------------------- ...
-
BZOJ1770:[USACO]lights 燈(高斯消元,DFS)
Description 貝希和她的閨密們在她們的牛棚中玩遊戲.但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了.貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望. ...
-
[luoguP2962] [USACO09NOV]灯Lights(高斯消元 + dfs)
传送门 先进行高斯消元 因为要求最少的开关次数,那么: 对于关键元,我们可以通过带入消元求出, 对于*元,我们暴力枚举,进行dfs,因为只有开关两种状态,0或1 #include <cmath ...
-
BZOJ 1770: [Usaco2009 Nov]lights 燈 [高斯消元XOR 搜索]
题意: 经典灯问题,求最少次数 本题数据不水,必须要暴搜*元的取值啦 想了好久 然而我看到网上的程序都没有用记录now的做法,那样做遇到*元应该可能会丢解吧...? 我的做法是把*元保存下来,枚 ...
随机推荐
-
SQL Server读写分离实现方案简介
读写分离是中型规模应用的数据库系统常见设计方案,通过将数据从主服务器同步到其他从服务器,提供非实时的查询功能,扩展性能并提高并发性. 数据库的读写分离的好处如下: 通过将“读”操作和“写”操作分离到不 ...
-
【转】Oracle Database PSU/CPU
转自: http://www.cnblogs.com/ebs-blog/archive/2011/07/28/2167232.html 1. 什么是PSU/CPU?CPU: Critical Patc ...
-
Android SDK更新以及ADT更新出现问题的解决办法
http://jingyan.baidu.com/article/148a192196209d4d70c3b168.html
-
.net 中生成二维码的组件
http://qrcodenet.codeplex.com/
-
js动态增加html页面元素
问题: <head> <meta http-equiv="Content-Type" content="text/html; charset=gb2 ...
-
微软发布了ASP.NET WebHooks预览版
微软 近期发布了ASP.NET WebHooks的预览版 ,这是一个可用于创建及使用Webhook功能的库.WebHooks支持MVC 5及WebApi 2. Webhook是一种通过HTTP实现用户 ...
-
怎样查看Eclipse是32位还是64位
首先进入到Eclipse的安装目录,如下图: 查找到文件名为"eclipse.ini" 文件,使用文本编辑工具,或记事本打开,如下图: 如图中的红框所示,如果是win32.x8 ...
-
14.MySQL(二)
数据之表操作 1.创建表 语法:CREATE TABLE table_name (column_name column_type); create table student( -> id IN ...
-
js短路表达式
今天碰见个题目,感觉短路表达式很好用. 题目: 定义一个计算圆面积的函数area_of_circle(),它有两个参数: r: 表示圆的半径: pi: 表示π的值,如果不传,则默认3.14 funct ...
-
常用Markdown公式整理 &;&; 页内跳转注意 &;&; Markdown preview
目录: 常用Markdown公式及注意事项 标题 列表 链接 区块 代码块 / 引用 粗体和斜体 文字块 图片 表格 横线 页内跳转注意事项 其他重要需注意 Markdown preview 前提: ...