【Luogu】P2485计算器(快速幂,exgcd和Bsgs模板)

时间:2023-12-16 14:33:50

  题目链接

  题目描述非常直接,要求你用快速幂解决第一问,exgcd解决第二问,bsgs解决第三问。

  emmmm于是现学bsgs

  第二问让求最小整数解好烦啊……

  假设我们要求得方程$ax+by=c(mod p)$的最小整数解

  令$d=gcd(a,b)$

  我们求得一个解$x_0,y_0$使得$ax_0+by_0=d(mod p)$

  然后$x_0*frac{c}{d}$为最小整数解。

  

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} long long Pow(long long a,long long b,long long c){
long long ret=;
while(b){
if(b&) ret=(ret*a)%c;
a=(a*a)%c;
b>>=;
}
return ret;
} long long exgcd(long long a,long long b,long long &x,long long &y){
if(b==){
x=;y=;
return a;
}
long long tmp=exgcd(b,a%b,x,y);
long long ret=x;x=y;y=ret-a/b*y;
return tmp;
} int main(){
int n=read(),m=read();
while(n--){
int y=read(),z=read(),p=read();
if(m==) printf("%lld\n",Pow(y,z,p));
else if(m==){
long long x,b;
long long now=exgcd(y,p,x,b);
if(z%now){
printf("Orz, I cannot find x!\n");
continue;
}
x/=now;
//exgcd(y/now,p/now,x,b);
x=(x+p/now)%(p/now);
printf("%lld\n",x*(z/now)%(p/now));
}
else{
if(y%p==){
printf("Orz, I cannot find x!\n");
continue;
}
map<long long,int>d;
long long m=ceil(sqrt(p));
for(int i=;i<=m;++i) d[Pow(y,i,p)*z%p]=i;
long long t=Pow(y,m,p);
long long ans=; bool flag=;
for(int i=;i<=m;++i){
ans=ans*t%p;
if(d.count(ans)){
long long ret=i*m%p-d[ans]%p;
printf("%lld\n",(ret%p+p)%p);
flag=; break;
}
}
if(flag==) printf("Orz, I cannot find x!\n");
}
}
return ;
}