7 个解决方案
#1
#include <stdio.h>
int mat[5][5];
int row_flag[5];
int col_flag[5];
int solution = 0;
void solve(int i, int j)
{
int k;
if (i == 5)
{
++solution;
return;
}
if (j == 5)
{
solve(i+1, 0);
return;
}
for (k = 0; k < 5; ++k)
{
int f = 1 << k;
if ((row_flag[i] & f) == 0 && (col_flag[j] & f) == 0)
{
mat[i][j] = k;
row_flag[i] |= f;
col_flag[j] |= f;
solve(i, j + 1);
row_flag[i] ^= f;
col_flag[j] ^= f;
}
}
}
int main()
{
solve(0, 0);
printf("%d\n", solution);
return 0;
}
#2
每行每列都不重复显然是一个5阶拉丁方
一共有5!种
一共有5!种
#3
用回溯法,类似于八皇后,1楼不错啊
#4
答案显然不小于 5! * 4!。
对于给定一组解,按列变换会产生 5!种不同的解。
对于这5!种解,对每组解后4行按行变换,产生4!组解。
所以解的个数是 5!*4! * (4个a,3个bcde 16个字符组成的一个符合要求的4阶矩阵的解的个数)
基于这个原理,1 楼的算法复杂度可以降低5!*4! = 2880倍。
其实我觉得这更像一个概率题,用笔划一划应该能算出结果。
#5
做一次行变换,再做一次列变换,有可能复合起来是恒等变换.
#6
假设有
11 12 13 14 15
21 X X X X
31 X X X X
41 X X X X
51 X X X X
对列进行任意变换,一共5!种,但是每一种 11所在的列顺序都是
11
21
31
41
51
所以对
21
31
41
51
4行进行任意行变换,会产生4!种组合,同时不会对列的5!种有任意影响。
也就是说对5列和下面4行进行变换时独立事件,应该是乘法关系。
#7
把楼上的算法改了改,用N-1的结果* N! * (N-1)!
两种算法对1,2,3,4,5都一样。
6阶的结果用快速算法是result = 812851200, 7阶估计要溢出了
原始的算法10分钟还没出结果,我先睡了,明天再看。
#include <stdio.h>
#define lll 5
#if 1
int mat[10][10];
int row_flag[10];
int col_flag[10];
int solution = 0;
void solve(int i, int j)
{
int k;
if (i == lll)
{
++solution;
return;
}
if (j == lll)
{
solve(i+1,0);
return;
}
for (k = 0; k < lll; ++k)
{
int f = 1 << k;
if ((row_flag[i] & f) == 0 && (col_flag[j] & f) == 0)
{
mat[i][j] = k;
row_flag[i] |= f;
col_flag[j] |= f;
solve(i, j + 1);
row_flag[i] ^= f;
col_flag[j] ^= f;
}
}
}
int main()
{
solve(0, 0);
printf("result = %d\n", solution);
return 0;
}
#else
int mat[10][10]={
0,1,2,3,4,5,6,7,8,9,
1,0,0,0,0,0,0,0,0,0,
2,0,0,0,0,0,0,0,0,0,
3,0,0,0,0,0,0,0,0,0,
4,0,0,0,0,0,0,0,0,0,
5,0,0,0,0,0,0,0,0,0,
6,0,0,0,0,0,0,0,0,0,
7,0,0,0,0,0,0,0,0,0,
8,0,0,0,0,0,0,0,0,0,
9,0,0,0,0,0,0,0,0,0};
int row_flag[10]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x100,0x200};
int col_flag[10]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x100,0x200};
int solution = 0;
void solve(int i, int j)
{
int k;
if (i == lll)
{
++solution;
return;
}
if (j == lll)
{
solve(i+1, 1);
return;
}
for (k = 0; k < lll; ++k)
{
int f = 1 << k;
if ((row_flag[i] & f) == 0 && (col_flag[j] & f) == 0)
{
mat[i][j] = k;
row_flag[i] |= f;
col_flag[j] |= f;
solve(i, j + 1);
row_flag[i] ^= f;
col_flag[j] ^= f;
}
}
}
int main()
{
solve(1, 1);
for (int i=2;i<lll;i++)
solution = solution *i*i;
solution *= lll;
printf("result = %d\n", solution);
return 0;
}
#endif
两种算法对1,2,3,4,5都一样。
6阶的结果用快速算法是result = 812851200, 7阶估计要溢出了
原始的算法10分钟还没出结果,我先睡了,明天再看。
#include <stdio.h>
#define lll 5
#if 1
int mat[10][10];
int row_flag[10];
int col_flag[10];
int solution = 0;
void solve(int i, int j)
{
int k;
if (i == lll)
{
++solution;
return;
}
if (j == lll)
{
solve(i+1,0);
return;
}
for (k = 0; k < lll; ++k)
{
int f = 1 << k;
if ((row_flag[i] & f) == 0 && (col_flag[j] & f) == 0)
{
mat[i][j] = k;
row_flag[i] |= f;
col_flag[j] |= f;
solve(i, j + 1);
row_flag[i] ^= f;
col_flag[j] ^= f;
}
}
}
int main()
{
solve(0, 0);
printf("result = %d\n", solution);
return 0;
}
#else
int mat[10][10]={
0,1,2,3,4,5,6,7,8,9,
1,0,0,0,0,0,0,0,0,0,
2,0,0,0,0,0,0,0,0,0,
3,0,0,0,0,0,0,0,0,0,
4,0,0,0,0,0,0,0,0,0,
5,0,0,0,0,0,0,0,0,0,
6,0,0,0,0,0,0,0,0,0,
7,0,0,0,0,0,0,0,0,0,
8,0,0,0,0,0,0,0,0,0,
9,0,0,0,0,0,0,0,0,0};
int row_flag[10]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x100,0x200};
int col_flag[10]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x100,0x200};
int solution = 0;
void solve(int i, int j)
{
int k;
if (i == lll)
{
++solution;
return;
}
if (j == lll)
{
solve(i+1, 1);
return;
}
for (k = 0; k < lll; ++k)
{
int f = 1 << k;
if ((row_flag[i] & f) == 0 && (col_flag[j] & f) == 0)
{
mat[i][j] = k;
row_flag[i] |= f;
col_flag[j] |= f;
solve(i, j + 1);
row_flag[i] ^= f;
col_flag[j] ^= f;
}
}
}
int main()
{
solve(1, 1);
for (int i=2;i<lll;i++)
solution = solution *i*i;
solution *= lll;
printf("result = %d\n", solution);
return 0;
}
#endif
#1
#include <stdio.h>
int mat[5][5];
int row_flag[5];
int col_flag[5];
int solution = 0;
void solve(int i, int j)
{
int k;
if (i == 5)
{
++solution;
return;
}
if (j == 5)
{
solve(i+1, 0);
return;
}
for (k = 0; k < 5; ++k)
{
int f = 1 << k;
if ((row_flag[i] & f) == 0 && (col_flag[j] & f) == 0)
{
mat[i][j] = k;
row_flag[i] |= f;
col_flag[j] |= f;
solve(i, j + 1);
row_flag[i] ^= f;
col_flag[j] ^= f;
}
}
}
int main()
{
solve(0, 0);
printf("%d\n", solution);
return 0;
}
#2
每行每列都不重复显然是一个5阶拉丁方
一共有5!种
一共有5!种
#3
用回溯法,类似于八皇后,1楼不错啊
#4
答案显然不小于 5! * 4!。
对于给定一组解,按列变换会产生 5!种不同的解。
对于这5!种解,对每组解后4行按行变换,产生4!组解。
所以解的个数是 5!*4! * (4个a,3个bcde 16个字符组成的一个符合要求的4阶矩阵的解的个数)
基于这个原理,1 楼的算法复杂度可以降低5!*4! = 2880倍。
其实我觉得这更像一个概率题,用笔划一划应该能算出结果。
#5
做一次行变换,再做一次列变换,有可能复合起来是恒等变换.
#6
假设有
11 12 13 14 15
21 X X X X
31 X X X X
41 X X X X
51 X X X X
对列进行任意变换,一共5!种,但是每一种 11所在的列顺序都是
11
21
31
41
51
所以对
21
31
41
51
4行进行任意行变换,会产生4!种组合,同时不会对列的5!种有任意影响。
也就是说对5列和下面4行进行变换时独立事件,应该是乘法关系。
#7
把楼上的算法改了改,用N-1的结果* N! * (N-1)!
两种算法对1,2,3,4,5都一样。
6阶的结果用快速算法是result = 812851200, 7阶估计要溢出了
原始的算法10分钟还没出结果,我先睡了,明天再看。
#include <stdio.h>
#define lll 5
#if 1
int mat[10][10];
int row_flag[10];
int col_flag[10];
int solution = 0;
void solve(int i, int j)
{
int k;
if (i == lll)
{
++solution;
return;
}
if (j == lll)
{
solve(i+1,0);
return;
}
for (k = 0; k < lll; ++k)
{
int f = 1 << k;
if ((row_flag[i] & f) == 0 && (col_flag[j] & f) == 0)
{
mat[i][j] = k;
row_flag[i] |= f;
col_flag[j] |= f;
solve(i, j + 1);
row_flag[i] ^= f;
col_flag[j] ^= f;
}
}
}
int main()
{
solve(0, 0);
printf("result = %d\n", solution);
return 0;
}
#else
int mat[10][10]={
0,1,2,3,4,5,6,7,8,9,
1,0,0,0,0,0,0,0,0,0,
2,0,0,0,0,0,0,0,0,0,
3,0,0,0,0,0,0,0,0,0,
4,0,0,0,0,0,0,0,0,0,
5,0,0,0,0,0,0,0,0,0,
6,0,0,0,0,0,0,0,0,0,
7,0,0,0,0,0,0,0,0,0,
8,0,0,0,0,0,0,0,0,0,
9,0,0,0,0,0,0,0,0,0};
int row_flag[10]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x100,0x200};
int col_flag[10]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x100,0x200};
int solution = 0;
void solve(int i, int j)
{
int k;
if (i == lll)
{
++solution;
return;
}
if (j == lll)
{
solve(i+1, 1);
return;
}
for (k = 0; k < lll; ++k)
{
int f = 1 << k;
if ((row_flag[i] & f) == 0 && (col_flag[j] & f) == 0)
{
mat[i][j] = k;
row_flag[i] |= f;
col_flag[j] |= f;
solve(i, j + 1);
row_flag[i] ^= f;
col_flag[j] ^= f;
}
}
}
int main()
{
solve(1, 1);
for (int i=2;i<lll;i++)
solution = solution *i*i;
solution *= lll;
printf("result = %d\n", solution);
return 0;
}
#endif
两种算法对1,2,3,4,5都一样。
6阶的结果用快速算法是result = 812851200, 7阶估计要溢出了
原始的算法10分钟还没出结果,我先睡了,明天再看。
#include <stdio.h>
#define lll 5
#if 1
int mat[10][10];
int row_flag[10];
int col_flag[10];
int solution = 0;
void solve(int i, int j)
{
int k;
if (i == lll)
{
++solution;
return;
}
if (j == lll)
{
solve(i+1,0);
return;
}
for (k = 0; k < lll; ++k)
{
int f = 1 << k;
if ((row_flag[i] & f) == 0 && (col_flag[j] & f) == 0)
{
mat[i][j] = k;
row_flag[i] |= f;
col_flag[j] |= f;
solve(i, j + 1);
row_flag[i] ^= f;
col_flag[j] ^= f;
}
}
}
int main()
{
solve(0, 0);
printf("result = %d\n", solution);
return 0;
}
#else
int mat[10][10]={
0,1,2,3,4,5,6,7,8,9,
1,0,0,0,0,0,0,0,0,0,
2,0,0,0,0,0,0,0,0,0,
3,0,0,0,0,0,0,0,0,0,
4,0,0,0,0,0,0,0,0,0,
5,0,0,0,0,0,0,0,0,0,
6,0,0,0,0,0,0,0,0,0,
7,0,0,0,0,0,0,0,0,0,
8,0,0,0,0,0,0,0,0,0,
9,0,0,0,0,0,0,0,0,0};
int row_flag[10]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x100,0x200};
int col_flag[10]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x100,0x200};
int solution = 0;
void solve(int i, int j)
{
int k;
if (i == lll)
{
++solution;
return;
}
if (j == lll)
{
solve(i+1, 1);
return;
}
for (k = 0; k < lll; ++k)
{
int f = 1 << k;
if ((row_flag[i] & f) == 0 && (col_flag[j] & f) == 0)
{
mat[i][j] = k;
row_flag[i] |= f;
col_flag[j] |= f;
solve(i, j + 1);
row_flag[i] ^= f;
col_flag[j] ^= f;
}
}
}
int main()
{
solve(1, 1);
for (int i=2;i<lll;i++)
solution = solution *i*i;
solution *= lll;
printf("result = %d\n", solution);
return 0;
}
#endif