UVA10534-----Wavio Sequence-----动态规划之LIS

时间:2023-12-16 09:02:08

题目地址:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1475

题目意思:

给你一个序列,告诉你Wavio序列的定义

若一个Wavio序列的长度为2*n+1

前n+1个是递增的

后n+1个是递减的

求出这个序列中的最长的Wavio序列的长度

解题思路:

对序列正着求LIS得出dp1[i]反着求LIS得出dp2[i]分别代表以i为终点的正着的LIS的长度,反着的LIS的长度

然后枚举i,找出最大的min(dp1[i],dp2[i])

长度就是这个*2-1了

另外这题求LIS需要使用n*logn复杂度的算法

详见:http://blog.csdn.net/dangwenliang/article/details/5728363,写的很好

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int maxn = 10000+20; int dp1[maxn];
int dp2[maxn];
int a[maxn];
int d[maxn];
int n; int find(int len,int ai)
{
int left=0;
int right=len;
while(left<=right)
{
int mid=(left+right)>>1;
if(ai>d[mid])
left=mid+1;
else if(ai<d[mid])
right=mid-1;
else
return mid;
}
return left;
} int main()
{
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
memset(d,0x3f3f3f3f,sizeof(d));
dp1[1] = 1;
d[1]=a[1];
d[0]=-1;
for(int i=2;i<=n;i++)
{
int j=find(n,a[i]);
d[j]=a[i];
dp1[i]=j;
} memset(d,0x3f3f3f3f,sizeof(d));
dp2[n] = 1;
d[1]=a[n];
d[0]=-1;
for(int i=n-1;i>=1;i--)
{
int j=find(n,a[i]);
d[j]=a[i];
dp2[i]=j;
} int ans = -1;
for(int i=1;i<=n;i++)
{
int tmp = min(dp1[i],dp2[i]);
if(ans < tmp*2-1)
ans = tmp*2-1;
}
printf("%d\n",ans);
}
return 0;
}