python解决上楼梯问题

时间:2023-12-15 21:51:20

假设一段楼梯共n(n>1)个台阶,小朋友一步最多能上3个台阶,那么小朋友上这段楼梯一共有多少种方法

(此为京东2016年笔试题目)

假设n为15,从第15个台阶上往回看,有3种方法可以上来(从第14个台阶上一步迈1个台阶上来,从第13个台阶上一步迈2个台阶上来,从第12个台阶上一步迈3个台阶上来),
同理,第14个、13个、12个台阶都可以这样推算,从而得到公式f(n) = f(n-1) + f(n-2) + f(n-3),其中n=15、14、13、...、5、4。然后就是确定这个递归公式的结束条件了,
第一个台阶只有1种上法,第二个台阶有2种上法(一步迈2个台阶上去、一步迈1个台阶分两步上去),第三个台阶有4种上法

代码如下

n = int(input())
a = 1
b = 2
c = 4
for i in range(n-3):
    c, b, a = a+b+c, c, b
print(c)

截图如下

python解决上楼梯问题

(来让小朋友把这些走法挨个走一遍......)

这里提一下上面的

c, b, a = a+b+c, c, b

这段代码的用法

这段代码是先计算右边的数值,先计算a + b + c

然后从右边开始先将b的值赋给a,再将c的值赋给b,最后将a + b + c的值赋给c

这段代码等价于

m = a + b +c

a = b

b = c

c = m

(其实我还是喜欢下面这样写,容易懂)