转载请说明出处:http://www.cnblogs.com/KingKou/p/4121373.html
1.简介
Wordnet是一个由普林斯顿大学认识科学实验室在心理学教授乔治·A·米勒的指导下建立和维护的大型的英语词典,WordNet的开发有两个目的:
1.它既是一个字典,又是一个辞典,它比单纯的辞典或词典都更加易于使用。
2.支持自动的文本分析以及人工智能应用。
在WordNet中,名词,动词,形容词和副词各自被组织成一个同义词的网络,每个同义词集合都代表一个基本的语义概念,并且这些集合之间也由各种关系连
接。(一个多义词将出现在它的每个意思的同义词集合中)。
2.使用
2.1 直接调用
直接使用wn.exe程序,命令行格式如下:
Wn [单词] [options] [search_option]
Options:
-h:会在显示结果前面显示帮助信息
-g:显示同义词相关的文本注释,一般是释义+例句
-a:在每一种sense前,显示字典撰写者的文件信息
-o:显示同义词的偏移量
-s:显示所有同义词的单词编号
-l:显示wordnet的版权、版本、许可证信息
-n#:只查找单词的第#个释义的信息
-over:显示单词的所以释义的整体信息
search_option:
-syns (n | v | a | r ):显示单词的同义词和直接上位词的同义词集。同义词以使用频率排序。括号里的是对应的词性(名词,动词,形容词,副词)
-simsv:显示动词的同义词和包含单词的直接上位词的同义词集合。同义词按照语义相似度分组
-ants (n | v | a | r ):显示单词的反义词集
-faml (n | v | a | r ):显示单词是否常见,和一词多义信息
-hype (n | v ):递归地显示单词上位词树。(单词 IS A KIND OF _____ relation)
-hypo (n | v ):显示直接下位词(_____ IS A KIND OF 单词 relation)
-tree (n | v ):递归显示单词的下位词树
-coor (n | v ):显示每个同义词的直接上位词及上位词的直接上位词
-deri (n | v ):显示派生名词和动词之间的联系形式。如goodness
-domn (n | v | a | r ):显示单词所属的类,如good的副词
-domt (n | v | a | r ):显示所有被分在单词所在领域的所有成员
-subsn:显示实体的部件关系。HAS SUBSTANCE关系(tree)
-partn:显示部分关系,比如头的部分是耳朵,脸,鼻子,之类的。HAS PART关系
-membn:显示成员关系,比如people有成员citizen。HAS MEMBER关系
-meron:显示上面三个全部信息
-hmern:显示成员树。这是一个递归树,会显示单词的所有成员和他的上位词(people)
-sprtn:显示包含单词的实体(PART OF关系)
-smemn:显示包含这个单词为成员的实体,MEMBER OF关系
-ssubn:显示包含这个单词为部件关系的实体,SUBSTANCE OF关系
-holon:显示所有上述三个关系
-hholn:递归显示part of关系
-entav:显示蕴含关系,通常是动词(push)
-framv:显示示例
-causv:导致关系
-pert (a | r ):pertainyms
-attr (n | a ):名词形容词的相互显示
-grep (n | v | a | r ):显示包含单词的词
2.2 nltk接口调用
Nltk中也带有wordnet,但是调用方式有所不同,调用方式如下:
from nltk.corpus import wordnet as wn
首先,是我们常用同义词的调用:
wn.synsets('motorcar')
结果:[Synset('car.n.01')]
因为'motorcar'只有一个意思,所以结果只有一个,那就是’car’作为名词的第一种释义。
我们也可以这样调用,获取单词指定词性、释义的同义词集:
>>> wn.synset('car.n.01').lemma_names
结果:
['car', 'auto', 'automobile', 'machine', 'motorcar']
如果我们不知道单词第I个释义的意思,我们可以调用definition查看,以便更精确地使用。
>>> wn.synset('car.n.01').definition
结果:
'a motor vehicle with four wheels; usually propelled by an internal combustion engine(内燃机)'
我们还可以调用examples查看具体例句:
>>> wn.synset('car.n.01').examples
结果:
['he needs a car to get to work']
在语言学中,有一个重要的任务,就是消歧,我们使用lemma(词条),可以获得一对一的同义词配对。
>>> wn.synset('car.n.01').lemmas ①
结果:
[Lemma('car.n.01.car'), Lemma('car.n.01.auto'), Lemma('car.n.01.automobile'),
Lemma('car.n.01.machine'), Lemma('car.n.01.motorcar')]
① 这是所有的词条,结果和上面直接查看同义词的是一样的
>>> wn.lemma('car.n.01.automobile') ②
结果:
Lemma('car.n.01.automobile')
② 我们可以判断特定两个词是否满足要求
>>> wn.lemma('car.n.01.automobile').synset ③
结果:
Synset('car.n.01')
③ 获取词条对应的同义词
>>> wn.lemma('car.n.01.automobile').name ④
结果:
'automobile'
④ 获取词条的名字
通过上面,我们可以获得一种获得同义词的方法:
>>> wn.synsets('car')
[Synset('car.n.01'), Synset('car.n.02'), Synset('car.n.03'), Synset('car.n.04'),
Synset('cable_car.n.01')]
>>> for synset in wn.synsets('car'):
... print synset.lemma_names
...
['car', 'auto', 'automobile', 'machine', 'motorcar']
['car', 'railcar', 'railway_car', 'railroad_car']
['car', 'gondola']
['car', 'elevator_car']
['cable_car', 'car']
把得到的结果合并区set()即可获得单词的同义词。
另外一种获得同义词,或者说是同类词的方法,就是上位词和下位词。比如’car’:
>>> motorcar = wn.synset('car.n.01')
>>> types_of_motorcar = motorcar.hyponyms()
>>> types_of_motorcar[26]
Synset('ambulance.n.01')
>>> sorted([lemma.name for synset in types_of_motorcar for lemma in synset.lemmas])
['Model_T', 'S.U.V.', 'SUV', 'Stanley_Steamer', 'ambulance', 'beach_waggon',
'beach_wagon', 'bus', 'cab', 'compact', 'compact_car', 'convertible',
'coupe', 'cruiser', 'electric', 'electric_automobile', 'electric_car',
'estate_car', 'gas_guzzler', 'hack', 'hardtop', 'hatchback', 'heap',
'horseless_carriage', 'hot-rod', 'hot_rod', 'jalopy', 'jeep', 'landrover',
'limo', 'limousine', 'loaner', 'minicar', 'minivan', 'pace_car', 'patrol_car',
'phaeton', 'police_car', 'police_cruiser', 'prowl_car', 'race_car', 'racer',
'racing_car', 'roadster', 'runabout', 'saloon', 'secondhand_car', 'sedan',
'sport_car', 'sport_utility', 'sport_utility_vehicle', 'sports_car', 'squad_car',
'station_waggon', 'station_wagon', 'stock_car', 'subcompact', 'subcompact_car',
'taxi', 'taxicab', 'tourer', 'touring_car', 'two-seater', 'used-car', 'waggon',
'wagon']
在调用wordnet的exe程序时,我们知道有从属关系,成员关系,蕴含关系之类的,在nltk,它们是这样的:
>>> wn.synset('tree.n.01').part_meronyms() 【部分】
[Synset('burl.n.02'), Synset('crown.n.07'), Synset('stump.n.01'),
Synset('trunk.n.01'), Synset('limb.n.02')]
>>> wn.synset('tree.n.01').substance_meronyms() 【实质】
[Synset('heartwood.n.01'), Synset('sapwood.n.01')]
>>> wn.synset('tree.n.01').member_holonyms() 【成员】
[Synset('forest.n.01')]
>>> wn.synset('mint.n.04').part_holonyms()
[Synset('mint.n.02')]
>>> wn.synset('mint.n.04').substance_holonyms()
[Synset('mint.n.05')]
下面是蕴含关系:
>>> wn.synset('walk.v.01').entailments()
[Synset('step.v.01')]
>>> wn.synset('eat.v.01').entailments()
[Synset('swallow.v.01'), Synset('chew.v.01')]
>>> wn.synset('tease.v.03').entailments()
[Synset('arouse.v.07'), Synset('disappoint.v.01')]
相对来说,个人感觉反义词做的就比较简陋:
>>>wn.lemma('supply.n.02.supply').antonyms()
[Lemma('demand.n.02.demand')]
Nltk有个功能,能根据内部的关系树,计算两个词之间的相似度:
>>>lim=wn.synset('limousine.n.1')
>>>amb=wn.synset('ambulance.n.1')
>>>lim.lowest_common_hypernyms(amb)
[Synset('car.n.01')]
我们可以看出,“'limousine(豪华轿车)”和“'ambulance(救护车)”的共同点(也就是公共上位词)是“car”。此外,我们还可以得到他们的相似度:
>>>lim.path_similarity(amb)
0.3333333333333333
还可以看他们的最近举例,举例越近,相似度越高:
>>>lim.shortest_path_distance(amb)
2
上面列举了NLTK的一些常用的命令,基本上wordnet中的命令,在NLTK都包括了,还有一些,比如offset等,有需要的时候可以参考链接1。
参考链接:
- nltk官方文档:
http://www.nltk.org/api/nltk.corpus.reader.html#module-nltk.corpus.reader.wordnet
- wordnet
Wordnet的一些简单使用的更多相关文章
-
自然语言20.1 WordNet介绍和使用 _
http://blog.csdn.net/ictextr9/article/details/4008703 Wordnet是一个词典.每个词语(word)可能有多个不同的语义,对应不同的sense.而 ...
-
wordnet的一些入门性介绍
关于wordnet的介绍很多,中英文都有,我这里主要是参考了别人的.自己组织了一下. 1.简介 1.1关于词典 Wordnet是一个由普林斯顿大学认识科学实验室在心理学教授乔治·A·米勒的指导下建立和 ...
-
NLP—WordNet——词与词之间的最小距离
WordNet,是由Princeton 大学的心理学家,语言学家和计算机工程师联合设计的一种基于认知语言学的英语词典.它不是光把单词以字母顺序排列,而且按照单词的意义组成一个“单词的网络”.我们这次的 ...
-
Programming Assignment 1: WordNet
编程作业一 作业链接:WordNet & Checklist 我的代码:WordNet.java & SAP.java & Outcast.java 这是第二部分的编程作业,因 ...
-
NLTK学习笔记(二):文本、语料资源和WordNet汇总
目录 语料库基本函数表 文本语料库分类 常见语料库及其用法 载入自定义语料库 词典资源 停用词语料库 WordNet面向语义的英语字典 语义相似度 语料库基本函数表 示例 描述 fileids() 语 ...
-
使用PyTorch简单实现卷积神经网络模型
这里我们会用 Python 实现三个简单的卷积神经网络模型:LeNet .AlexNet .VGGNet,首先我们需要了解三大基础数据集:MNIST 数据集.Cifar 数据集和 ImageNet 数 ...
-
自然语言20.1 WordNet介绍和使用
https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149(欢迎关注博主 ...
-
手把手教你NLTK WordNet使用方法
最近看了WordNet,0基础入门,简单记下笔记.因为本身不是学自然语言处理的,好多名词不是特别清楚,现有的博客读的晕乎乎,所以重新写了这个,理清思路.除了行文中提到的链接,其他几个有用的参考链接如下 ...
-
【造*】打造一个简单的万能Excel读写工具
大家工作或者平时是不是经常遇到要读写一些简单格式的Excel? shit!~很蛋疼,因为之前吹牛,就搞了个这东西,还算是挺实用,和大家分享下. 厌烦了每次搞简单类型的Excel读写?不怕~来,喜欢流式 ...
随机推荐
-
Java程序员的日常 —— Java类加载中的顺序
之前说过Java中类的加载顺序,这次看完继承部分,就结合继承再来说说类的加载顺序. 继承的加载顺序 由于static块会在首次加载类的时候执行,因此下面的例子就是用static块来测试类的加载顺序. ...
-
VS活动解决方案平台
测试环境:win7 x64 测试程序:WCF查询数据库后将数据集返回到Winform程序加载并显示 测试结果: 1.从感觉来说Exe在 x86目标平台生成,启动速度快. 2.内存消耗:x86的程序在超 ...
-
[转] 从 dll 程序集中动态加载窗体
无涯 原文 从 dll 程序集中动态加载窗体 [原创] 昨天晚上花了一晚上时间写了一个从程序集中动态加载窗体的程序.将任何包含窗体的代码编译成 dll 文件,再把 dll 文件拷贝到本程序的目录下,本 ...
-
利用Multi-Probe LSH构建ANN高维索引
感谢大神们的无私奉献精神........因此笔者要坚持开源,专注开源,开源就像在HPU的考试中不像其他人作弊一样,长远来看,会有巨大收获. 一.背景介绍 1.1 相似性搜索简介 高维相似性搜索在音频. ...
-
【HDU 4372】 Count the Buildings (第一类斯特林数)
Count the Buildings Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
-
(转载)反编译android的apk文件步骤
下面的方法我已经尝试过,完全可以成功,重点的步骤我在这里说一下 1.必须要有java环境,记得配置好环境变量 2.如果只查看class中的函数文件,只需要下载dex2jar和jd-gui 3.下载地址 ...
-
CS找工作好文章
我的美国CS面试经验分享 -- 转载 怎样花两年时间去面试一个人 上面列出了一些比较好的书单 cs土硕找工作总结(二) 笔试面试准备http://blog.renren.com/blog/221227 ...
-
LeetCode OJ Remove Duplicates from Sorted Array II
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice? For exampl ...
-
Android 发展思路
1. 做一个有 ‘特色’ 的程序员 Android 开发,本身并不是一个可以走得多远的方向,真正有价值的地方在于与具体的业务方向结合,比如:Android 与音视频技术,Android 与智能硬件交互 ...
-
Session和Cookie的理解
原文地址:https://juejin.im/post/5aede266f265da0ba266e0ef