迭代器,生成器,装饰器
1、生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
l是一个list[],g是一个generator()
generator保存的是算法,每次调用next(g)
,就计算出g
的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration
的错误。
#!/usr/bin/env python
#-*- coding:utf-8 -*-
# Author:DCC l = [x * x for x in range(5)]
print(l)
g = (x * x for x in range(5))
print(g)
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g)) #运行结果
[0, 1, 4, 9, 16]
<generator object <genexpr> at 0x00000000006969E8>
0
1
4
9
16
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
斐波拉契数列:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'
fib(10) #运行结果
1
1
2
3
5
8
13
21
34
55
a, b
=
b, a
+
b
相当于
t
=
(b, a
+
b)
# t是一个tuple
a
=
t[
0
]
b
=
t[
1
]
#yield 将print(b)改为yield b,fib函数变成generator
def fib(max):
n,a,b = 0,0,1
while n < max:
#print(b)
yield b
a,b = b,a+b
n += 1
return 'done'
print(fib(5))
print(fib(5).__next__())
print(fib(5).__next__()) #运行结果
<generator object fib at 0x000001CDB2D511A8>
1
1
通过yield实现在单线程的情况下实现并发运算的效果, send的使用
import time
def consumer(name):
print("%s 准备吃包子啦!" %name)
while True:
baozi = yield
print("包子[%s]来了,被[%s]吃了!" %(baozi,name))
def producer(name):
c = consumer('A')
c2 = consumer('B')
c.__next__()
c2.__next__()
print("老子开始准备做包子啦!")
for i in range(5):
time.sleep(1)
print("做了2个包子!")
c.send(i)
c2.send(i)
producer("dcc") #运行结果
A 准备吃包子啦!
B 准备吃包子啦!
老子开始准备做包子啦!
做了2个包子!
包子[0]来了,被[A]吃了!
包子[0]来了,被[B]吃了!
做了2个包子!
包子[1]来了,被[A]吃了!
包子[1]来了,被[B]吃了!
做了2个包子!
包子[2]来了,被[A]吃了!
包子[2]来了,被[B]吃了!
做了2个包子!
包子[3]来了,被[A]吃了!
包子[3]来了,被[B]吃了!
做了2个包子!
包子[4]来了,被[A]吃了!
包子[4]来了,被[B]吃了!
迭代器
Iterable:可迭代的
Iterator:迭代器
凡是可作用于for
循环的对象都是Iterable
类型;
凡是可作用于next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列;
集合数据类型如list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
这些可以直接作用于for
循环的对象统称为可迭代对象:Iterable
。
可以使用isinstance()
判断一个对象是否是Iterable
对象
可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True