Eigen学习之简单线性方程与矩阵分解

时间:2023-12-15 14:35:08

  Eigen提供了解线性方程的计算方法,包括LU分解法,QR分解法,SVD(奇异值分解)、特征值分解等。对于一般形式如下的线性系统:

        Eigen学习之简单线性方程与矩阵分解

  解决上述方程的方式一般是将矩阵A进行分解,当然最基本的方法是高斯消元法。

  先来看Eigen 官方的第一个例程:

 #include <iostream>
#include <Eigen/Dense> using namespace std;
using namespace Eigen; int main()
{
Matrix3f A;
Vector3f b;
A << ,,, ,,, ,,;
b << ,,;
cout<<"Here is the Matrix A:\n"<< A <<endl;
cout<<" Here is the vector b:\n"<< b <<endl;
Vector3f x = A.colPivHouseholderQr().solve(b);
cout<<"The solution is:\n"<<x<<endl;
return ;
}

运行结果如下:

Eigen学习之简单线性方程与矩阵分解

Eigen内置的解线性方程组的算法如下表所示:

Eigen学习之简单线性方程与矩阵分解

使用这些接口也可以解决矩阵相乘的问题:

 #include <iostream>
#include <Eigen/Dense> using namespace std;
using namespace Eigen; int main()
{
Matrix2f A,b;
A << ,-,-,;
b << ,,,;
cout<<"Here is the matrix A:\n"<<A<<endl;
cout<<"Here is the right hand side b:\n"<<b<<endl;
Matrix2f x = A.ldlt().solve(b);
cout<<"The solution is:\n"<<x<<endl;
return ;
}

运行结果如下:

Eigen学习之简单线性方程与矩阵分解

Eigen也提供了计算特征值和特征向量的算法:

下面是一个简单的例子:

 #include <iostream>
#include <Eigen/Dense> using namespace std;
using namespace Eigen; int main()
{
Matrix2f A;
A << ,,,;
cout<<"Here is the matrix A:\n"<<A<<endl;
SelfAdjointEigenSolver<Matrix2f> eigensolver(A);
if( eigensolver.info() != Success ) abort();
cout<<" The eigenvalues of A are:\n"<<eigensolver.eigenvalues()<<endl;
cout<<" Here is a matrix whose columns are eigenvectors of A\n"
<<" corresponding to these eigenvalues:\n"
<<eigensolver.eigenvectors()<<endl;
return ;
}

运行结果如下:

Eigen学习之简单线性方程与矩阵分解

Eigen 也提供了求逆矩阵和求矩阵行列式的算法,但是这两种算法对于大型矩阵来说都是非常不经济的算法,当需要对大型矩阵做这种的操作时,需要自己判断到底需不需这样做。但是对于小型矩阵 则可以没有顾虑地使用。

下面是一个例子:

 #include <iostream>
#include <Eigen/Dense> using namespace std;
using namespace Eigen; int main()
{
Matrix3f A;
A << ,,,
,,,
-,,; cout<<"Here is the matrix A:\n"<<A<<endl;
cout<<"The determinant of A is "<<A.determinant()<<endl;
cout<<"The inverse of A is:\n"<<A.inverse()<<endl;
return ;
}

运行结果如下:

Eigen学习之简单线性方程与矩阵分解

Eigen也提供了解最小二乘问题的解法,并给出两种实现,分别是BDCSVD和JacobiSVD,其中推荐使用的一种是BDCSVD。下面是一个例子:

 #include <iostream>
#include <Eigen/Dense> using namespace std;
using namespace Eigen; int main()
{
MatrixXf A = MatrixXf::Random(,);
cout<<"Here is the matrix A:\n"<<A<<endl;
VectorXf b = VectorXf::Random();
cout<<"Here is the right hand side b:\n"<<b<<endl;
cout<<"The least-squares solution is:\n"
<<A.bdcSvd(ComputeThinU|ComputeThinV).solve(b)<<endl;
return ;
}

运行结果如下:

Eigen学习之简单线性方程与矩阵分解