画出决策边界线--plot_2d_separator.py源代码【来自python机器学习基础教程】

时间:2023-12-14 19:21:50
 import numpy as np
import matplotlib.pyplot as plt
from .plot_helpers import cm2, cm3, discrete_scatter def _call_classifier_chunked(classifier_pred_or_decide, X):
# The chunk_size is used to chunk the large arrays to work with x86
# memory models that are restricted to < 2 GB in memory allocation. The
# chunk_size value used here is based on a measurement with the
# MLPClassifier using the following parameters:
# MLPClassifier(solver='lbfgs', random_state=0,
# hidden_layer_sizes=[1000,1000,1000])
# by reducing the value it is possible to trade in time for memory.
# It is possible to chunk the array as the calculations are independent of
# each other.
# Note: an intermittent version made a distinction between
# 32- and 64 bit architectures avoiding the chunking. Testing revealed
# that even on 64 bit architectures the chunking increases the
# performance by a factor of 3-5, largely due to the avoidance of memory
# swapping.
chunk_size = 10000 # We use a list to collect all result chunks
Y_result_chunks = [] # Call the classifier in chunks.
for x_chunk in np.array_split(X, np.arange(chunk_size, X.shape[0],
chunk_size, dtype=np.int32),
axis=0):
Y_result_chunks.append(classifier_pred_or_decide(x_chunk)) return np.concatenate(Y_result_chunks) def plot_2d_classification(classifier, X, fill=False, ax=None, eps=None,
alpha=1, cm=cm3):
# multiclass
if eps is None:
eps = X.std() / 2. if ax is None:
ax = plt.gca() x_min, x_max = X[:, 0].min() - eps, X[:, 0].max() + eps
y_min, y_max = X[:, 1].min() - eps, X[:, 1].max() + eps
xx = np.linspace(x_min, x_max, 1000)
yy = np.linspace(y_min, y_max, 1000) X1, X2 = np.meshgrid(xx, yy)
X_grid = np.c_[X1.ravel(), X2.ravel()]
decision_values = classifier.predict(X_grid)
ax.imshow(decision_values.reshape(X1.shape), extent=(x_min, x_max,
y_min, y_max),
aspect='auto', origin='lower', alpha=alpha, cmap=cm)
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
ax.set_xticks(())
ax.set_yticks(()) def plot_2d_scores(classifier, X, ax=None, eps=None, alpha=1, cm="viridis",
function=None):
# binary with fill
if eps is None:
eps = X.std() / 2. if ax is None:
ax = plt.gca() x_min, x_max = X[:, 0].min() - eps, X[:, 0].max() + eps
y_min, y_max = X[:, 1].min() - eps, X[:, 1].max() + eps
xx = np.linspace(x_min, x_max, 100)
yy = np.linspace(y_min, y_max, 100) X1, X2 = np.meshgrid(xx, yy)
X_grid = np.c_[X1.ravel(), X2.ravel()]
if function is None:
function = getattr(classifier, "decision_function",
getattr(classifier, "predict_proba"))
else:
function = getattr(classifier, function)
decision_values = function(X_grid)
if decision_values.ndim > 1 and decision_values.shape[1] > 1:
# predict_proba
decision_values = decision_values[:, 1]
grr = ax.imshow(decision_values.reshape(X1.shape),
extent=(x_min, x_max, y_min, y_max), aspect='auto',
origin='lower', alpha=alpha, cmap=cm) ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
ax.set_xticks(())
ax.set_yticks(())
return grr def plot_2d_separator(classifier, X, fill=False, ax=None, eps=None, alpha=1,
cm=cm2, linewidth=None, threshold=None,
linestyle="solid"):
# binary?
if eps is None:
eps = X.std() / 2. if ax is None:
ax = plt.gca() x_min, x_max = X[:, 0].min() - eps, X[:, 0].max() + eps
y_min, y_max = X[:, 1].min() - eps, X[:, 1].max() + eps
xx = np.linspace(x_min, x_max, 1000)
yy = np.linspace(y_min, y_max, 1000) X1, X2 = np.meshgrid(xx, yy)
X_grid = np.c_[X1.ravel(), X2.ravel()]
if hasattr(classifier, "decision_function"):
decision_values = _call_classifier_chunked(classifier.decision_function,
X_grid)
levels = [0] if threshold is None else [threshold]
fill_levels = [decision_values.min()] + levels + [
decision_values.max()]
else:
# no decision_function
decision_values = _call_classifier_chunked(classifier.predict_proba,
X_grid)[:, 1]
levels = [.5] if threshold is None else [threshold]
fill_levels = [0] + levels + [1]
if fill:
ax.contourf(X1, X2, decision_values.reshape(X1.shape),
levels=fill_levels, alpha=alpha, cmap=cm)
else:
ax.contour(X1, X2, decision_values.reshape(X1.shape), levels=levels,
colors="black", alpha=alpha, linewidths=linewidth,
linestyles=linestyle, zorder=5) ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
ax.set_xticks(())
ax.set_yticks(()) if __name__ == '__main__':
from sklearn.datasets import make_blobs
from sklearn.linear_model import LogisticRegression
X, y = make_blobs(centers=2, random_state=42)
clf = LogisticRegression(solver='lbfgs').fit(X, y)
plot_2d_separator(clf, X, fill=True)
discrete_scatter(X[:, 0], X[:, 1], y)
plt.show()