hadoop安装及配置入门篇

时间:2023-12-14 16:01:38
声明:
author: 龚细军
时间: --
类型: 笔记
转载时请注明出处及相应链接。
链接地址: http://www.cnblogs.com/gongxijun/p/5726024.html

本笔记所记录全部基于真实操作所得,所使用hadoop版本为hadoop-2.7.2,使用操作系统为kylin-linux.

默认是:已经安装好了jdk环境.并已经下载好hadoop&解压之后

1. 下载完成hadoo并解压之后

进入到安装目录,我们会看到如下几个文件夹和文件

/hadoop-2.7.2$ ls
bin include lib LICENSE.txt NOTICE.txt README.txt share
etc input libexec logs output sbin wc-in

介绍一下基本情况:

bin目录: hadoop的指令集合存储区,例如 hadoop ,hdfs , yarn,mapred等  这个文件比较重要

我们可以如此使用它们:

/hadoop-2.7.2$ bin/hadoop dfs -cat output/* |more

include目录: C++/C 开发用的头文件

lib目录: 提供各种库,c/c++开发库

etc目录: 环境配置包,其他的版本采用conf目录替换,进入该目录下会看到

/hadoop-2.7.2/etc/hadoop$ ls | grep .xml
capacity-scheduler.xml
core-site.xml
hadoop-policy.xml
hdfs-site.xml
hdfs-site.xml~
httpfs-site.xml
kms-acls.xml
kms-site.xml
mapred-queues.xml.template
mapred-site.xml.template
ssl-client.xml.example
ssl-server.xml.example
yarn-site.xml

关于如何伪分布式配置

1.配置文件core.site.xml

  <configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>

2.hdfs.site.xml文件配置

    <configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.name.dir</name>
<value>/home/gongxijun/HDFS/fileinput</value>
</property>
<property>
<name>dfs.data.dir</name>
<value>/home/gongxijun/HDFS/fileoutput</value>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
<description>
if "true" ,enable permission checking in HDFS. if "false",permission checking is turned off,but all other behavior is unchanged. Switching from one parameter value to the other does not change the mode , owner or group of files or directories.
</description>
</property>
</configuration>

3.配置mapred-site.xml文件,如要将mapred-site.xml.template文件复制一份mapred-site.xml,并对mapred-site.xml进行如下配置

<configuration>
<property>
<name>mapred.job.tracker</name>
<value>localhost:9001</value>
</property>
</configuration>

之后,启动hadoop,输入./start-all.sh

程序pom.xml文件配置

   <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.version}</version>
<scope>compile</scope>
<exclusions>
<exclusion>
<artifactId>zookeeper</artifactId>
<groupId>org.apache.zookeeper</groupId>
</exclusion>
<exclusion>
<artifactId>slf4j-log4j12</artifactId>
<groupId>org.slf4j</groupId>
</exclusion>
<exclusion>
<artifactId>jsp-api</artifactId>
<groupId>javax.servlet.jsp</groupId>
</exclusion>
<exclusion>
<artifactId>jasper-runtime</artifactId>
<groupId>tomcat</groupId>
</exclusion>
<exclusion>
<artifactId>jasper-compiler</artifactId>
<groupId>tomcat</groupId>
</exclusion>
<exclusion>
<artifactId>jersey-server</artifactId>
<groupId>com.sun.jersey</groupId>
</exclusion>
<exclusion>
<artifactId>asm</artifactId>
<groupId>asm</groupId>
</exclusion>
</exclusions>
</dependency>

运行程序如下:

 package com.qunar.mapReduce;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import java.io.IOException;
import java.util.Scanner;
import java.util.StringTokenizer; /**
* *********************************************************
* <p/>
* Author: XiJun.Gong
* Date: 2016-07-29 14:59
* Version: default 1.0.0
* Class description:
* <p/>
* *********************************************************
*/
public class MapReduceDemo { public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); @Override
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
} public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { @Override
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
} context.write(key, new IntWritable(sum));
}
} public static void main(String[] args) throws Exception { Configuration configuration = new Configuration();
Job job = new Job(configuration, "wordCount");
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
Scanner reader = new Scanner(System.in);
while (reader.hasNext()) {
FileInputFormat.addInputPath(job, new Path(reader.next()));
FileOutputFormat.setOutputPath(job, new Path(reader.next()));
job.waitForCompletion(true);
}
}
}
}

运行程序:

Connected to the target VM, address: '127.0.0.1:51980', transport: 'socket'
12:41:05.404 [main] DEBUG o.a.h.m.lib.MutableMetricsFactory - field org.apache.hadoop.metrics2.lib.MutableRate org.apache.hadoop.security.UserGroupInformation$UgiMetrics.loginSuccess with annotation @org.apache.hadoop.metrics2.annotation.Metric(valueName=Time, about=, value=[Rate of successful kerberos logins and latency (milliseconds)], always=false, type=DEFAULT, sampleName=Ops)
12:41:05.441 [main] DEBUG o.a.h.m.lib.MutableMetricsFactory - field org.apache.hadoop.metrics2.lib.MutableRate org.apache.hadoop.security.UserGroupInformation$UgiMetrics.loginFailure with annotation @org.apache.hadoop.metrics2.annotation.Metric(valueName=Time, about=, value=[Rate of failed kerberos logins and latency (milliseconds)], always=false, type=DEFAULT, sampleName=Ops)
12:41:05.442 [main] DEBUG o.a.h.m.lib.MutableMetricsFactory - field org.apache.hadoop.metrics2.lib.MutableRate org.apache.hadoop.security.UserGroupInformation$UgiMetrics.getGroups with annotation @org.apache.hadoop.metrics2.annotation.Metric(valueName=Time, about=, value=[GetGroups], always=false, type=DEFAULT, sampleName=Ops)
12:41:05.444 [main] DEBUG o.a.h.m.impl.MetricsSystemImpl - UgiMetrics, User and group related metrics
12:41:05.871 [main] DEBUG o.a.h.s.a.util.KerberosName - Kerberos krb5 configuration not found, setting default realm to empty
12:41:05.883 [main] DEBUG org.apache.hadoop.security.Groups - Creating new Groups object
12:41:05.895 [main] DEBUG o.a.hadoop.util.NativeCodeLoader - Trying to load the custom-built native-hadoop library...
12:41:05.896 [main] DEBUG o.a.hadoop.util.NativeCodeLoader - Failed to load native-hadoop with error: java.lang.UnsatisfiedLinkError: no hadoop in java.library.path
12:41:05.896 [main] DEBUG o.a.hadoop.util.NativeCodeLoader - java.library.path=/home/gongxijun/Qunar/idea-IU-139.1117.1/bin::/usr/java/packages/lib/amd64:/usr/lib64:/lib64:/lib:/usr/lib
12:41:05.897 [main] WARN o.a.hadoop.util.NativeCodeLoader - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
12:41:05.900 [main] DEBUG o.a.hadoop.util.PerformanceAdvisory - Falling back to shell based
12:41:05.905 [main] DEBUG o.a.h.s.JniBasedUnixGroupsMappingWithFallback - Group mapping impl=org.apache.hadoop.security.ShellBasedUnixGroupsMapping
12:41:05.957 [main] DEBUG org.apache.hadoop.util.Shell - setsid exited with exit code 0
12:41:05.957 [main] DEBUG org.apache.hadoop.security.Groups - Group mapping impl=org.apache.hadoop.security.JniBasedUnixGroupsMappingWithFallback; cacheTimeout=300000; warningDeltaMs=5000
12:41:05.961 [main] DEBUG o.a.h.security.UserGroupInformation - hadoop login
12:41:05.962 [main] DEBUG o.a.h.security.UserGroupInformation - hadoop login commit
12:41:05.968 [main] DEBUG o.a.h.security.UserGroupInformation - using local user:UnixPrincipal: gongxijun
12:41:05.969 [main] DEBUG o.a.h.security.UserGroupInformation - Using user: "UnixPrincipal: gongxijun" with name gongxijun
12:41:05.969 [main] DEBUG o.a.h.security.UserGroupInformation - User entry: "gongxijun"
12:41:05.970 [main] DEBUG o.a.h.security.UserGroupInformation - UGI loginUser:gongxijun (auth:SIMPLE)

输入命令:

/home/gongxijun/web进阶.txt
/home/gongxijun/a.txt

显示结果:

12:44:36.992 [main] INFO  org.apache.hadoop.mapreduce.Job - Counters: 33
File System Counters
FILE: Number of bytes read=6316
FILE: Number of bytes written=518809
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=84
Map output records=85
Map output bytes=1476
Map output materialized bytes=1652
Input split bytes=99
Combine input records=0
Combine output records=0
Reduce input groups=82
Reduce shuffle bytes=1652
Reduce input records=85
Reduce output records=82
Spilled Records=170
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=9
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=459276288
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=1335
File Output Format Counters
Bytes Written=1311

结果在a.txt文件夹中:

(kafuka卡夫卡)    1
(缺陷: 1
(需要重点学习) 1
---去查看QMQ--message---->broker 1
/ 1
1. 2
1.判断线程安全的两个机准: 1
2. 3
3. 1
Apache 1
Cache 1
Client: 1
ConCurrentHashMap 1
Dubbo 1
Executor 1
Futrue/CountDownLatch 1
Guava 1
HTTP: 1
HashMap 1
Hession 1
HttpComponents 1
Java 1
Json 1
Key-Value 1
Kryo(重点) 1
LRU 1
Protobuf 1
QMQ/AMQ/rabbitimq 1
ReadWriterLock 1
ReentrantLock 1
async-http-client 1
c3p0 1
client实现 1
dbpc 1
redis 1
seriialization 1
servlet 1
snchronized 1
spymemcached 1
tomcat-jdbc 1
xmemcached 1
一致性Hash 1
一: 1
三: 1
乐观锁: 1
二: 1
互斥 1
共享数据 1
分布式锁? 1
分布式: 1
前端轮询,后端异步: 1
单例的 1
参数回调 1
可复用资源,创建代价大 1
可扩展性,服务降级,负载均衡,灰度 1
可重入锁 1
可靠性 1
回顾 1
场景: 1
对象池: 1
将对象的状态信息转换为可以存储或传输形式的过程. 1
尽量不要使用本地缓存 1
并发修改 1
序列化: 1
建议: 1
异步调用 1
异步: 1
形成环) 1
性能 1
方式: 1
本地缓存太大,可以使用对象池 1
概念: 1
池化技术 1
消息队列: 1
类型: 1
线程池 1
缓存--本地 1
读写锁: 1
连接池: 1
(分段锁) 1
(推荐使用) 1
, 1