本文实例讲述了Python基于最小二乘法实现曲线拟合。分享给大家供大家参考,具体如下:
这里不手动实现最小二乘,调用scipy库中实现好的相关优化函数。
考虑如下的含有4个参数的函数式:
构造数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
import numpy as np
from scipy import optimize
import matplotlib.pyplot as plt
def logistic4(x, A, B, C, D):
return (A - D) / ( 1 + (x / C) * * B) + D
def residuals(p, y, x):
A, B, C, D = p
return y - logisctic4(x, A, B, C, D)
def peval(x, p):
A, B, C, D = p
return logistic4(x, A, B, C, D)
A, B, C, D = . 5 , 2.5 , 8 , 7.3
x = np.linspace( 0 , 20 , 20 )
y_true = logistic4(x, A, B, C, D)
y_meas = y_true + 0.2 * np.random.randn( len (y_true))
|
调用工具箱函数,进行优化
1
2
3
4
|
p0 = [ 1 / 2 ] * 4
plesq = optimize.leastsq(residuals, p0, args = (y_meas, x))
# leastsq函数的功能其实是根据误差(y_meas-y_true)
# 估计模型(也即函数)的参数
|
绘图
1
2
3
4
5
6
7
8
|
plt.figure(figsize = ( 6 , 4.5 ))
plt.plot(x, peval(x, plesq[ 0 ]), x, y_meas, 'o' , x, y_true)
plt.legend([ 'Fit' , 'Noisy' , 'True' ], loc = 'upper left' )
plt.title( 'least square for the noisy data (measurements)' )
for i, (param, true, est) in enumerate ( zip ( 'ABCD' , [A, B, C, D], plesq[ 0 ])):
plt.text( 11 , 2 - i * . 5 , '{} = {:.2f}, est({:.2f}) = {:.2f}' . format (param, true, param, est))
plt.savefig( './logisitic.png' )
plt.show()
|
希望本文所述对大家Python程序设计有所帮助。
原文链接:https://blog.csdn.net/lanchunhui/article/details/50358943