I have a dataframe with values like
我有一个数据框,其值为
A B
1 4
2 6
3 9
I need to add a new column by adding values from column A and B, like
我需要通过添加A列和B列的值来添加新列,例如
A B C
1 4 5
2 6 8
3 9 12
I believe this can be done using lambda function, but I can't figure out how to do it.
我相信这可以使用lambda函数完成,但我无法弄清楚如何做到这一点。
6 个解决方案
#1
33
Very simple:
df['C'] = df['A'] + df['B']
#2
25
The simplest way would be to use DeepSpace answer. However, if you really want to use an anonymous function you can use apply:
最简单的方法是使用DeepSpace答案。但是,如果您真的想使用匿名函数,可以使用apply:
df['C'] = df.apply(lambda row: row['A'] + row['B'], axis=1)
#3
14
You could use sum
function to achieve that as @EdChum mentioned in the comment:
您可以使用sum函数来实现注释中提到的@EdChum:
df['C'] = df[['A', 'B']].sum(axis=1)
In [245]: df
Out[245]:
A B C
0 1 4 5
1 2 6 8
2 3 9 12
#4
10
Building a little more on Anton's answer, you can add all the columns like this:
在Anton的答案上建立更多内容,您可以添加如下所有列:
df['sum'] = df[list(df.columns)].sum(axis=1)
#5
4
As of Pandas version 0.16.0 you can use assign
as follows:
从Pandas版本0.16.0开始,您可以使用assign如下:
df = pd.DataFrame({"A": [1,2,3], "B": [4,6,9]})
df.assign(C = df.A + df.B)
# Out[383]:
# A B C
# 0 1 4 5
# 1 2 6 8
# 2 3 9 12
You can add multiple columns this way as follows:
您可以通过以下方式添加多个列:
df.assign(C = df.A + df.B,
Diff = df.B - df.A,
Mult = df.A * df.B)
# Out[379]:
# A B C Diff Mult
# 0 1 4 5 3 4
# 1 2 6 8 4 12
# 2 3 9 12 6 27
#6
1
You could do:
你可以这样做:
df['C'] = df.sum(axis=1)
If you only want to do numerical values:
如果您只想做数值:
df['C'] = df.sum(axis=1, numeric_only=True)
#1
33
Very simple:
df['C'] = df['A'] + df['B']
#2
25
The simplest way would be to use DeepSpace answer. However, if you really want to use an anonymous function you can use apply:
最简单的方法是使用DeepSpace答案。但是,如果您真的想使用匿名函数,可以使用apply:
df['C'] = df.apply(lambda row: row['A'] + row['B'], axis=1)
#3
14
You could use sum
function to achieve that as @EdChum mentioned in the comment:
您可以使用sum函数来实现注释中提到的@EdChum:
df['C'] = df[['A', 'B']].sum(axis=1)
In [245]: df
Out[245]:
A B C
0 1 4 5
1 2 6 8
2 3 9 12
#4
10
Building a little more on Anton's answer, you can add all the columns like this:
在Anton的答案上建立更多内容,您可以添加如下所有列:
df['sum'] = df[list(df.columns)].sum(axis=1)
#5
4
As of Pandas version 0.16.0 you can use assign
as follows:
从Pandas版本0.16.0开始,您可以使用assign如下:
df = pd.DataFrame({"A": [1,2,3], "B": [4,6,9]})
df.assign(C = df.A + df.B)
# Out[383]:
# A B C
# 0 1 4 5
# 1 2 6 8
# 2 3 9 12
You can add multiple columns this way as follows:
您可以通过以下方式添加多个列:
df.assign(C = df.A + df.B,
Diff = df.B - df.A,
Mult = df.A * df.B)
# Out[379]:
# A B C Diff Mult
# 0 1 4 5 3 4
# 1 2 6 8 4 12
# 2 3 9 12 6 27
#6
1
You could do:
你可以这样做:
df['C'] = df.sum(axis=1)
If you only want to do numerical values:
如果您只想做数值:
df['C'] = df.sum(axis=1, numeric_only=True)