如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
>>> import numpy as np
>>> import pandas as pd
>>> index=np.array([2,4,6,8,10])
>>> data=np.array([3,5,7,9,11])
>>> data=pd.DataFrame({'num':data},index=index)
>>> print(data)
num
2 3
4 5
6 7
8 9
10 11
>>> select_index=index[index>5]
>>> print(select_index)
[ 6 8 10]
>>> data['num'].loc[select_index]
6 7
8 9
10 11
Name: num, dtype: int32
>>>
|
注意,不能用iloc,iloc是将序列当作数组来访问,下标又会从0开始:
1
2
3
4
5
6
7
8
9
10
11
|
>>> data['num'].iloc[2:5]
6 7
8 9
10 11
Name: num, dtype: int32
>>> data['num'].iloc[[2,3,4]]
6 7
8 9
10 11
Name: num, dtype: int32
>>>
|
以上这篇pandas实现选取特定索引的行就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/o1101574955/article/details/51638128