本文实例讲述了朴素贝叶斯分类算法原理与Python实现与使用方法。分享给大家供大家参考,具体如下:
朴素贝叶斯分类算法
1、朴素贝叶斯分类算法原理
1.1、概述
贝叶斯分类算法是一大类分类算法的总称
贝叶斯分类算法以样本可能属于某类的概率来作为分类依据
朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种
注:朴素的意思是条件概率独立性
P(A|x1x2x3x4)=p(A|x1)*p(A|x2)p(A|x3)p(A|x4)则为条件概率独立
P(xy|z)=p(xyz)/p(z)=p(xz)/p(z)*p(yz)/p(z)
1.2、算法思想
朴素贝叶斯的思想是这样的:
如果一个事物在一些属性条件发生的情况下,事物属于A的概率>属于B的概率,则判定事物属于A
通俗来说比如,你在街上看到一个黑人,我让你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?
在你的脑海中,有这么一个判断流程:
①、这个人的肤色是黑色 <特征>
②、黑色人种是非洲人的概率最高 <条件概率:黑色条件下是非洲人的概率>
③、没有其他辅助信息的情况下,最好的判断就是非洲人
这就是朴素贝叶斯的思想基础。
再扩展一下,假如在街上看到一个黑人讲英语,那我们是怎么去判断他来自于哪里?
提取特征:
肤色: 黑
语言: 英语
黑色人种来自非洲的概率: 80%
黑色人种来自于美国的概率:20%
讲英语的人来自于非洲的概率:10%
讲英语的人来自于美国的概率:90%
在我们的自然思维方式中,就会这样判断:
这个人来自非洲的概率:80% * 10% = 0.08
这个人来自美国的概率:20% * 90% =0.18
我们的判断结果就是:此人来自美国!
其蕴含的数学原理如下:
p(A|xy)=p(Axy)/p(xy)=p(Axy)/p(x)p(y)=p(A)/p(x)*p(A)/p(y)* p(xy)/p(xy)=p(A|x)p(A|y)
P(类别 | 特征)=P(特征 | 类别)*P(类别) / P(特征)
1.3、算法步骤
①、分解各类先验样本数据中的特征
②、计算各类数据中,各特征的条件概率
(比如:特征1出现的情况下,属于A类的概率p(A|特征1),属于B类的概率p(B|特征1),属于C类的概率p(C|特征1)......)
③、分解待分类数据中的特征(特征1、特征2、特征3、特征4......)
④、计算各特征的各条件概率的乘积,如下所示:
判断为A类的概率:p(A|特征1)*p(A|特征2)*p(A|特征3)*p(A|特征4).....
判断为B类的概率:p(B|特征1)*p(B|特征2)*p(B|特征3)*p(B|特征4).....
判断为C类的概率:p(C|特征1)*p(C|特征2)*p(C|特征3)*p(C|特征4).....
......
⑤、结果中的最大值就是该样本所属的类别
1.4、算法应用举例
大众点评、淘宝等电商上都会有大量的用户评论,比如:
1、衣服质量太差了!!!!颜色根本不纯!!! | 0 |
2、我有一有种上当受骗的感觉!!!! | 0 |
3、质量太差,衣服拿到手感觉像旧货!!! | 0 |
4、上身漂亮,合身,很帅,给卖家点赞 | 1 |
5、穿上衣服帅呆了,给点一万个赞 | 1 |
6、我在他家买了三件衣服!!!!质量都很差! | 0 |
其中1/2/3/6是差评,4/5是好评
现在需要使用朴素贝叶斯分类算法来自动分类其他的评论,比如:
a、这么差的衣服以后再也不买了
b、帅,有逼格
……
1.5、算法应用流程
①、分解出先验数据中的各特征
(即分词,比如“衣服”“质量太差”“差”“不纯”“帅”“漂亮”,“赞”……)
②、计算各类别(好评、差评)中,各特征的条件概率
(比如 p(“衣服”|差评)、p(“衣服”|好评)、p(“差”|好评) 、p(“差”|差评)……)
③、分解出待分类样本的各特征
(比如分解a: “差” “衣服” ……)
④、计算类别概率
P(好评) = p(好评|“差”) *p(好评|“衣服”)*……
P(差评) = p(差评|“差”) *p(差评|“衣服”)*……
⑤、显然P(差评)的结果值更大,因此a被判别为“差评”
1.6、朴素贝叶斯分类算法案例
大体计算方法:
P(好评 | 单词1,单词2,单词3) = P(单词1,单词2,单词3 | 好评) * P(好评) / P(单词1,单词2,单词3)
因为分母都相同,所以只用比较分子即可--->P(单词1,单词2,单词3 | 好评) P(好评)
每个单词之间都是相互独立的---->P(单词1 | 好评)P(单词2 | 好评)P(单词3 | 好评)*P(好评)
P(单词1 | 好评) = 单词1在样本好评中出现的总次数/样本好评句子中总的单词数
P(好评) = 样本好评的条数/样本的总条数
同理:
P(差评 | 单词1,单词2,单词3) = P(单词1,单词2,单词3 | 差评) * P(差评) / P(单词1,单词2,单词3)
因为分母都相同,所以只用比较分子即可--->P(单词1,单词2,单词3 | 差评) P(差评)
每个单词之间都是相互独立的---->P(单词1 | 差评)P(单词2 | 差评)P(单词3 | 差评)*P(差评)
2、 Python案例
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
#!/usr/bin/python
# coding=utf-8
from numpy import *
# 过滤网站的恶意留言 侮辱性:1 非侮辱性:0
# 创建一个实验样本
def loadDataSet():
postingList = [[ 'my' , 'dog' , 'has' , 'flea' , 'problems' , 'help' , 'please' ],
[ 'maybe' , 'not' , 'take' , 'him' , 'to' , 'dog' , 'park' , 'stupid' ],
[ 'my' , 'dalmation' , 'is' , 'so' , 'cute' , 'I' , 'love' , 'him' ],
[ 'stop' , 'posting' , 'stupid' , 'worthless' , 'garbage' ],
[ 'mr' , 'licks' , 'ate' , 'my' , 'steak' , 'how' , 'to' , 'stop' , 'him' ],
[ 'quit' , 'buying' , 'worthless' , 'dog' , 'food' , 'stupid' ]]
classVec = [ 0 , 1 , 0 , 1 , 0 , 1 ]
return postingList, classVec
# 创建一个包含在所有文档中出现的不重复词的列表
def createVocabList(dataSet):
vocabSet = set ([]) # 创建一个空集
for document in dataSet:
vocabSet = vocabSet | set (document) # 创建两个集合的并集
return list (vocabSet)
# 将文档词条转换成词向量
def setOfWords2Vec(vocabList, inputSet):
returnVec = [ 0 ] * len (vocabList) # 创建一个其中所含元素都为0的向量
for word in inputSet:
if word in vocabList:
# returnVec[vocabList.index(word)] = 1 # index函数在字符串里找到字符第一次出现的位置 词集模型
returnVec[vocabList.index(word)] + = 1 # 文档的词袋模型 每个单词可以出现多次
else : print "the word: %s is not in my Vocabulary!" % word
return returnVec
# 朴素贝叶斯分类器训练函数 从词向量计算概率
def trainNB0(trainMatrix, trainCategory):
numTrainDocs = len (trainMatrix)
numWords = len (trainMatrix[ 0 ])
pAbusive = sum (trainCategory) / float (numTrainDocs)
# p0Num = zeros(numWords); p1Num = zeros(numWords)
# p0Denom = 0.0; p1Denom = 0.0
p0Num = ones(numWords); # 避免一个概率值为0,最后的乘积也为0
p1Num = ones(numWords); # 用来统计两类数据中,各词的词频
p0Denom = 2.0 ; # 用于统计0类中的总数
p1Denom = 2.0 # 用于统计1类中的总数
for i in range (numTrainDocs):
if trainCategory[i] = = 1 :
p1Num + = trainMatrix[i]
p1Denom + = sum (trainMatrix[i])
else :
p0Num + = trainMatrix[i]
p0Denom + = sum (trainMatrix[i])
# p1Vect = p1Num / p1Denom
# p0Vect = p0Num / p0Denom
p1Vect = log(p1Num / p1Denom) # 在类1中,每个次的发生概率
p0Vect = log(p0Num / p0Denom) # 避免下溢出或者浮点数舍入导致的错误 下溢出是由太多很小的数相乘得到的
return p0Vect, p1Vect, pAbusive
# 朴素贝叶斯分类器
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum (vec2Classify * p1Vec) + log(pClass1)
p0 = sum (vec2Classify * p0Vec) + log( 1.0 - pClass1)
if p1 > p0:
return 1
else :
return 0
def testingNB():
listOPosts, listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
testEntry = [ 'love' , 'my' , 'dalmation' ]
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry, 'classified as: ' , classifyNB(thisDoc, p0V, p1V, pAb)
testEntry = [ 'stupid' , 'garbage' ]
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry, 'classified as: ' , classifyNB(thisDoc, p0V, p1V, pAb)
# 调用测试方法----------------------------------------------------------------------
testingNB()
|
运行结果:
希望本文所述对大家Python程序设计有所帮助。
原文链接:https://www.cnblogs.com/ahu-lichang/p/7157855.html