ELK重难点总结和整体优化配置

时间:2022-10-24 21:52:52

本文收录在Linux运维企业架构实战系列

做了几周的测试,踩了无数的坑,总结一下,全是干货,给大家分享~

一、elk 实用知识点总结

1、编码转换问题(主要就是中文乱码)

(1)input 中的codec => plain 转码

codec => plain {
charset => "GB2312"
}

将GB2312 的文本编码,转为UTF-8 的编码

(2)也可以在filebeat中实现编码的转换(推荐)

filebeat.prospectors:
- input_type: log
paths:
- c:\Users\Administrator\Desktop\performanceTrace.txt
encoding: GB2312

2、删除多余日志中的多余行

(1)logstash filter 中drop 删除

    if ([message] =~ "^20.*-\ task\ request,.*,start\ time.*") {   #用正则需删除的多余行
drop {}

(2)日志示例

-- ::, []DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:-- ::   #需删除的行
-- Request String : {"UserName":"","Pwd":"ZYjyh727","DeviceType":,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End
-- Response String : {"ErrorCode":,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":} -- End

3、grok 处理多种日志不同的行

(1)日志示例:

-- ::, []DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:-- ::
-- Request String : {"UserName":"","Pwd":"ZYjyh727","DeviceType":,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End
-- Response String : {"ErrorCode":,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":} -- End

(2)在logstash filter中grok 分别处理3行

match => {
"message" => "^20.*-\ task\ request,.*,start\ time\:%{TIMESTAMP_ISO8601:RequestTime}"
match => {
"message" => "^--\ Request\ String\ :\ \{\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?<Pwd>.*)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?<DeviceId>.*)\",\"EquipmentNo\":(?<EquipmentNo>.*),\"SSID\":(?<SSID>.*),\"RegisterPhones\":(?<RegisterPhones>.*),\"AppKey\":\"(?<AppKey>.*)\",\"Version\":\"(?<Version>.*)\"\}\ --\ \End.*"
}
match => {
"message" => "^--\ Response\ String\ :\ \{\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?<Success>[a-z]*),\"ErrorMsg\":(?<ErrorMsg>.*),\"Result\":(?<Result>.*),\"WaitInterval\":%{NUMBER:WaitInterval:int}\}\ --\ \End.*"
}
... 等多行

4、日志多行合并处理—multiline插件(重点)

(1)示例:

① 日志

-- ::, []DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:-- ::
-- Request String : {"UserName":"","Pwd":"ZYjyh727","DeviceType":,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End
-- Response String : {"ErrorCode":,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":} -- End

② logstash grok 对合并后多行的处理(合并多行后续都一样,如下)

filter {
  grok {
    match => {
      "message" => "^%{TIMESTAMP_ISO8601:InsertTime}\ .*-\ task\ request,.*,start\ time:%{TIMESTAMP_ISO8601:RequestTime}\n--\ Request\ String\ :\ \{\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?<Pwd>.*)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?<DeviceId>.*)\",\"EquipmentNo\":(?<EquipmentNo>.*),\"SSID\":(?<SSID>.*),\"RegisterPhones\":(?<RegisterPhones>.*),\"AppKey\":\"(?<AppKey>.*)\",\"Version\":\"(?<Version>.*)\"\}\ --\ \End\n--\ Response\ String\ :\ \{\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?<Success>[a-z]*),\"ErrorMsg\":(?<ErrorMsg>.*),\"Result\":(?<Result>.*),\"WaitInterval\":%{NUMBER:WaitInterval:int}\}\ --\ \End"
    }
  }
}

(2)在filebeat中使用multiline 插件(推荐)

① 介绍multiline

pattern:正则匹配从哪行合并

negate:true/false,匹配到pattern 部分开始合并,还是不配到的合并

match:after/before(需自己理解)

  after:匹配到pattern 部分后合并,注意:这种情况最后一行日志不会被匹配处理

  before:匹配到pattern 部分前合并(推荐)

② 5.5版本之后(before为例)

filebeat.prospectors:
- input_type: log
paths:
- /root/performanceTrace*
fields:
type: zidonghualog
multiline.pattern: '.*\"WaitInterval\":.*--\ End'
multiline.negate: true
multiline.match: before

③ 5.5版本之前(after为例)

filebeat.prospectors:
- input_type: log
paths:
- /root/performanceTrace*
input_type: log
multiline:
pattern: '^20.*'
negate: true
match: after

(3)在logstash input中使用multiline 插件(没有filebeat 时推荐)

① 介绍multiline

pattern:正则匹配从哪行合并

negate:true/false,匹配到pattern 部分开始合并,还是不配到的合并

what:previous/next(需自己理解)

  previous:相当于filebeat 的after

  next:相当于filebeat 的before

② 用法

input {
file {
path => ["/root/logs/log2"]
start_position => "beginning"
codec => multiline {
pattern => "^20.*"
negate => true
what => "previous"
}
}
}

(4)在logstash filter中使用multiline 插件(不推荐)

(a)不推荐的原因:

  ① filter设置multiline后,pipline worker会自动将为1

  ② 5.5 版本官方把multiline 去除了,要使用的话需下载,下载命令如下:

  /usr/share/logstash/bin/logstash-plugin install logstash-filter-multiline

(b)示例:

filter {
multiline {
pattern => "^20.*"
negate => true
what => "previous"
}

5、logstash filter 中的date使用

(1) 日志示例

-- :: []DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:-- ::

(2) date 使用

        date {
match => ["InsertTime","YYYY-MM-dd HH:mm:ss "]
remove_field => "InsertTime"
}

注:

match => ["timestamp" ,"dd/MMM/YYYY H:m:s Z"]

  匹配这个字段,字段的格式为:日日/月月月/年年年年 时/分/秒 时区

也可以写为:match => ["timestamp","ISO8601"](推荐)

(3)date 介绍

  就是将匹配日志中时间的key 替换为@timestamp 的时间,因为@timestamp 的时间是日志送到logstash 的时间,并不是日志中真正的时间。

6、对多类日志分类处理(重点)

① 在filebeat 的配置中添加type 分类

filebeat:
prospectors:
-
paths:
#- /mnt/data/WebApiDebugLog.txt*
- /mnt/data_total/WebApiDebugLog.txt*
fields:
type: WebApiDebugLog_total
-
paths:
- /mnt/data_request/WebApiDebugLog.txt*
#- /mnt/data/WebApiDebugLog.txt*
fields:
type: WebApiDebugLog_request
-
paths:
- /mnt/data_report/WebApiDebugLog.txt*
#- /mnt/data/WebApiDebugLog.txt*
fields:
type: WebApiDebugLog_report

② 在logstash filter中使用if,可进行对不同类进行不同处理

filter {
if [fields][type] == "WebApiDebugLog_request" { #对request 类日志
if ([message] =~ "^20.*-\ task\ report,.*,start\ time.*") { #删除report 行
drop {}
}
grok {
match => {"... ..."}
}
}

③ 在logstash output中使用if

if [fields][type] == "WebApiDebugLog_total" {
elasticsearch {
hosts => ["6.6.6.6:9200"]
index => "logstashl-WebApiDebugLog_total-%{+YYYY.MM.dd}"
document_type => "WebApiDebugLog_total_logs"
} 

二、对elk 整体性能的优化

1、性能分析

(1)服务器硬件Linux:1cpu 4GRAM

假设每条日志250 Byte

(2)分析

logstash-Linux:1cpu 4GRAM

每秒500条日志

去掉ruby每秒660条日志

去掉grok后每秒1000条数据

filebeat-Linux:1cpu 4GRAM

每秒2500-3500条数据

每天每台机器可处理:24h*60min*60sec*3000*250Byte=64,800,000,000Bytes,约64G

③ 瓶颈在logstash 从redis中取数据存入ES,开启一个logstash,每秒约处理6000条数据;开启两个logstash,每秒约处理10000条数据(cpu已基本跑满);

④ logstash的启动过程占用大量系统资源,因为脚本中要检查java、ruby以及其他环境变量,启动后资源占用会恢复到正常状态。

2、关于收集日志的选择:logstash/filter

(1)没有原则要求使用filebeat或logstash,两者作为shipper的功能是一样的,区别在于:

logstash由于集成了众多插件,如grok,ruby,所以相比beat是重量级的;

② logstash启动后占用资源更多,如果硬件资源足够则无需考虑二者差异;

③ logstash基于JVM,支持跨平台;而beat使用golang编写,AIX不支持;

④ AIX 64bit平台上需要安装jdk(jre) 1.7 32bit,64bit的不支持;

⑤ filebeat可以直接输入到ES,但是系统中存在logstash直接输入到ES的情况,这将造成不同的索引类型造成检索复杂,最好统一输入到els 的源。

(2)总结

  logstash/filter 总之各有千秋,但是,我推荐选择:在每个需要收集的日志服务器上配置filebeat,因为轻量级,用于收集日志;再统一输出给logstash,做对日志的处理;最后统一由logstash 输出给els。

3、logstash的优化相关配置

(1)可以优化的参数,可根据自己的硬件进行优化配置

① pipeline 线程数,官方建议是等于CPU内核数

默认配置 ---> pipeline.workers: 2

可优化为 ---> pipeline.workers: CPU内核数(或几倍cpu内核数)

② 实际output 时的线程数

默认配置 ---> pipeline.output.workers: 1

可优化为 ---> pipeline.output.workers: 不超过pipeline 线程数

③ 每次发送的事件数

默认配置 ---> pipeline.batch.size: 125

可优化为 ---> pipeline.batch.size: 1000

④ 发送延时

默认配置 ---> pipeline.batch.delay: 5

可优化为 ---> pipeline.batch.size: 10

(2)总结

  通过设置-w参数指定pipeline worker数量,也可直接修改配置文件logstash.yml。这会提高filter和output的线程数,如果需要的话,将其设置为cpu核心数的几倍是安全的,线程在I/O上是空闲的。

  默认每个输出在一个pipeline worker线程上活动,可以在输出output 中设置workers设置,不要将该值设置大于pipeline worker数。

  还可以设置输出的batch_size数,例如ES输出与batch size一致。

  filter设置multiline后,pipline worker会自动将为1,如果使用filebeat,建议在beat中就使用multiline,如果使用logstash作为shipper,建议在input 中设置multiline,不要在filter中设置multiline。

(3)Logstash中的JVM配置文件

  Logstash是一个基于Java开发的程序,需要运行在JVM中,可以通过配置jvm.options来针对JVM进行设定。比如内存的最大最小、垃圾清理机制等等。JVM的内存分配不能太大不能太小,太大会拖慢操作系统。太小导致无法启动。默认如下:

-Xms256m #最小使用内存

-Xmx1g #最大使用内存

4、引入Redis 的相关问题

(1)filebeat可以直接输入到logstash(indexer),但logstash没有存储功能,如果需要重启需要先停所有连入的beat,再停logstash,造成运维麻烦;另外如果logstash发生异常则会丢失数据;引入Redis作为数据缓冲池,当logstash异常停止后可以从Redis的客户端看到数据缓存在Redis中;

(2)Redis可以使用list(最长支持4,294,967,295条)或发布订阅存储模式;

(3)redis 做elk 缓冲队列的优化:

① bind 0.0.0.0 #不要监听本地端口

② requirepass ilinux.io #加密码,为了安全运行

③ 只做队列,没必要持久存储,把所有持久化功能关掉:快照(RDB文件)和追加式文件(AOF文件),性能更好

  save "" 禁用快照

  appendonly no 关闭RDB

④ 把内存的淘汰策略关掉,把内存空间最大

  maxmemory 0 #maxmemory为0的时候表示我们对Redis的内存使用没有限制

5、elasticsearch 节点优化配置

(1)服务器硬件配置,OS 参数

(a) /etc/sysctl.conf 配置

vim /etc/sysctl.conf

① vm.swappiness =                      #ES 推荐将此参数设置为 ,大幅降低 swap 分区的大小,强制最大程度的使用内存,注意,这里不要设置为 , 这会很可能会造成 OOM
② net.core.somaxconn = #定义了每个端口最大的监听队列的长度
③ vm.max_map_count= #限制一个进程可以拥有的VMA(虚拟内存区域)的数量。虚拟内存区域是一个连续的虚拟地址空间区域。当VMA 的数量超过这个值,OOM
④ fs.file-max = #设置 Linux 内核分配的文件句柄的最大数量

[root@elasticsearch]# sysctl -p 生效一下

(b)limits.conf 配置

vim /etc/security/limits.conf

elasticsearch    soft    nofile
elasticsearch hard nofile
elasticsearch soft memlock unlimited
elasticsearch hard memlock unlimited

(c)为了使以上参数永久生效,还要设置两个地方

vim /etc/pam.d/common-session-noninteractive

vim /etc/pam.d/common-session

添加如下属性:

session required pam_limits.so

可能需重启后生效

(2)elasticsearch 中的JVM配置文件

-Xms2g

-Xmx2g

① 将最小堆大小(Xms)和最大堆大小(Xmx)设置为彼此相等。

② Elasticsearch可用的堆越多,可用于缓存的内存就越多。但请注意,太多的堆可能会使您长时间垃圾收集暂停。

③ 设置Xmx为不超过物理RAM的50%,以确保有足够的物理内存留给内核文件系统缓存。

④ 不要设置Xmx为JVM用于压缩对象指针的临界值以上;确切的截止值有所不同,但接近32 GB。不要超过32G,如果空间大,多跑几个实例,不要让一个实例太大内存

(3)elasticsearch 配置文件优化参数

① vim elasticsearch.yml

bootstrap.memory_lock: true  #锁住内存,不使用swap
#缓存、线程等优化如下
bootstrap.mlockall: true
transport.tcp.compress: true
indices.fielddata.cache.size: %
indices.cache.filter.size: %
indices.cache.filter.terms.size: 1024mb
threadpool:
search:
type: cached
size:
queue_size:

② 设置环境变量

vim /etc/profile.d/elasticsearch.sh export ES_HEAP_SIZE=2g    #Heap Size不超过物理内存的一半,且小于32G

(4)集群的优化(我未使用集群)

① ES是分布式存储,当设置同样的cluster.name后会自动发现并加入集群;

② 集群会自动选举一个master,当master宕机后重新选举;

③ 为防止"脑裂",集群中个数最好为奇数个

④ 为有效管理节点,可关闭广播 discovery.zen.ping.multicast.enabled: false,并设置单播节点组discovery.zen.ping.unicast.hosts: ["ip1", "ip2", "ip3"]

6、性能的检查

(1)检查输入和输出的性能

Logstash和其连接的服务运行速度一致,它可以和输入、输出的速度一样快。

(2)检查系统参数

① CPU

注意CPU是否过载。在Linux/Unix系统中可以使用top -H查看进程参数以及总计。

如果CPU使用过高,直接跳到检查JVM堆的章节并检查Logstash worker设置。

② Memory

注意Logstash是运行在Java虚拟机中的,所以它只会用到你分配给它的最大内存。

检查其他应用使用大量内存的情况,这将造成Logstash使用硬盘swap,这种情况会在应用占用内存超出物理内存范围时。

③ I/O 监控磁盘I/O检查磁盘饱和度

使用Logstash plugin(例如使用文件输出)磁盘会发生饱和。

当发生大量错误,Logstash生成大量错误日志时磁盘也会发生饱和。

在Linux中,可使用iostat,dstat或者其他命令监控磁盘I/O

④ 监控网络I/O

当使用大量网络操作的input、output时,会导致网络饱和。

在Linux中可使用dstat或iftop监控网络情况。

(3)检查JVM heap

  heap设置太小会导致CPU使用率过高,这是因为JVM的垃圾回收机制导致的。

  一个快速检查该设置的方法是将heap设置为两倍大小然后检测性能改进。不要将heap设置超过物理内存大小,保留至少1G内存给操作系统和其他进程。

  你可以使用类似jmap命令行或VisualVM更加精确的计算JVM heap

ELK重难点总结和整体优化配置的更多相关文章

  1. 14&period;3-ELK重难点总结和整体优化配置

    本文收录在Linux运维企业架构实战系列 做了几周的测试,踩了无数的坑,总结一下,全是干货,给大家分享~ 一.elk 实用知识点总结 1.编码转换问题(主要就是中文乱码) (1)input 中的cod ...

  2. eclipse的使用、优化配置

    一.简介 eclipse 可谓是Java开发界的神器,基本占据了大部分的Java开发市场,而且其官方还对其他语言提供支持,如C++,Ruby,JavaScript等等.为 什么使用它?我想离不开下面的 ...

  3. eclipse使用和优化配置

    一.简介 eclipse 可谓是Java开发界的神器,基本占据了大部分的Java开发市场,而且其官方还对其他语言提供支持,如C++,Ruby,JavaScript等等.为 什么使用它?我想离不开下面的 ...

  4. Eclipse的企业开发时常用快捷键使用、优化配置(博主推荐)

    不多说,直接上干货! 一.简介 eclipse可谓是Java开发界的神器,基本占据了大部分的Java开发市场,而且其官方还对其他语言提供支持,如C++,Ruby,JavaScript等等.为什么使用它 ...

  5. Mysql优化配置

    Mysql配置优化 一.环境介绍 Mysql版本:5.5.27 二.优化内容 字段 介绍 推荐值 skip-locking 避免MySQL的外部锁定,减少出错几率增强稳定性 back_log MySQ ...

  6. 善用性能工具进行SQL整体优化

    SQL优化是一个复杂的工程,首先要讲究从整体到局部.今天我们首先学习关于数据库整体优化都有哪些性能工具,接着分析这些工具的特点,并结合案例进行探索,最后再进行总结和思考. 总体学习思路如下图所示: 都 ...

  7. 503是一种HTTP状态码。英文名503 Service Unavailable与404(404 Not Found&rpar;是同属一种网页状态出错码。前者是服务器出错的一种返回状态,后者是网页程序没有相关的结果后返回的一种状态,需要优化网站的时候通常需要制作404出错页以便网站整体优化。

    goldCat1 商城 消息 | 百度首页 新闻网页贴吧知道音乐图片视频地图百科文库 进入词条搜索词条帮助 近期有不法分子冒充官方收费编辑词条,百度百科严正声明:百科词条人人可编辑,词条创建和修改均免 ...

  8. 关于web系统整体优化提速总结

    关于web系统整体优化提速总结 一.背景 随着公司业务的拓展,随之而来就是各种系统横向和纵向的增加,PV.UV也都随之增加,原有的系统架构和模式慢慢遇上了瓶颈,需要逐步的对系统从整体上进行改造升级,通 ...

  9. Intellij IDEA 2019 最新优化配置

    Intellij IDEA 2019 最新优化配置     转发自Dimple’s Blog 摘要: 之前在CSDN上写了一点关于IDEA的优化配置之类的文章,有些图片失效了,很多人都希望会有继续更新 ...

随机推荐

  1. 万向节锁&lpar;Gimbal Lock&rpar;的理解

    [TOC] 结论 我直接抛出结论: Gimbal Lock 产生的原因不是欧拉角也不是旋转顺序,而是我們的思维方式和程序的执行逻辑没有对应,也就是说是我们的观念导致这个情况的发生. 他人解释 首先我们 ...

  2. &period;Net缓存管理框架CacheManager(转)

    转载地址:http://www.cnblogs.com/JustRun1983/p/CacheManager.html Cache缓存在计算机领域是一个被普遍使用的概念.硬件中CPU有一级缓存,二级缓 ...

  3. MMORPG大型游戏设计与开发(服务器 游戏场景 核心详述)

    核心这个词来的是多么的高深,可能我们也因为这个字眼望而却步,也就很难去掌握这部分的知识.之所以将核心放在最前面讲解,也可以看出它真的很重要,希望朋友们不会错过这个一直以来让大家不熟悉的知识,同我一起进 ...

  4. Ant OOM的问题

    ant 编译的问题 Android编译的有时候会报OOM的错误. 可能是Java的堆大小设置的问题 可在 ant.bat 脚本的  @echo off 语句后面添加: set ANT_OPTS=-Xm ...

  5. pch

    #define kWeakSelf(weakSelf) __weak __typeof(self)weakSelf = self; #ifndef __OPTIMIZE__#define NSLog( ...

  6. PHP之验证码类

    <?php /** * Created by PhpStorm. * User: Administrator * Date: 2016/6/20 * Time: 14:29 */ Class c ...

  7. FPGA的图像处理技术,你知道多少?

    最近一段时间一直在研究基于FPGA的图像处理,乘着EEPW这个机会和大家交流一下,自己也顺便总结一下.主要是为了大家对用FPGA做图像处理有个感性的认识,如果真要研究的话就得更加深入学习了.本人水平有 ...

  8. 第八届蓝桥杯省赛17【java B组】第一题

    1,标题: 购物单    小明刚刚找到工作,老板人很好,只是老板夫人很爱购物.老板忙的时候经常让小明帮忙到商场代为购物.小明很厌烦,但又不好推辞.    这不,XX大促销又来了!老板夫人开出了长长的购 ...

  9. spring cloud zipkin sleuth与spring boot aop结合后,启动慢

    问题描述: 引入了spring cloud的监控starter,间接引入jooq. 又引入了 spring-boot-starter-web,所以间接引入aop. 参考下面资料后:https://gi ...

  10. NVIDIA Titan Xp Star Wars Collector&&num;39&semi;s Edition显卡深度学习工作站 &plus; Ubuntu17&period;10 &plus; Tensorflow-gpu &plus; Anaconda3 &plus; Python 3&period;6 设置

    为了能让 Tensorflow GPU 版本跑起来,我折腾了1个多星期. 总体参照 https://zhuanlan.zhihu.com/p/32118549 ,安装成功,但还是有不足的地方, 在此记 ...