1.map算子
private static void map() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("map")
.setMaster("local");
//创建JavasparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<Integer> numbers = Arrays.asList(1,2,3,4,5);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
//使用map算子,将集合中的每个元素都乘以2
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {
@Override
public Integer call(Integer v1) throws Exception {
return v1 * 2;
}
});
//打印新的RDD
multipleNumberRDD.foreach(new VoidFunction<Integer>() {
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
//关闭JavasparkContext
sc.close();
}
2.filter算子
private static void filter() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("filter")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//模拟集合
List<Integer> numbers = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
//对集合使用filter算子,过滤出集合中的偶数
JavaRDD<Integer> evenNumberRDD = numberRDD.filter(new Function<Integer, Boolean>() {
@Override
public Boolean call(Integer v1) throws Exception {
return v1%2==0;
}
});
evenNumberRDD.foreach(new VoidFunction<Integer>() {
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
sc.close();
}
3.flatMap算子
Spark 中 map函数会对每一条输入进行指定的操作,然后为每一条输入返回一个对象;
而flatMap函数则是两个操作的集合——正是“先映射后扁平化”:
操作1:同map函数一样:对每一条输入进行指定的操作,然后为每一条输入返回一个对象
操作2:最后将所有对象合并为一个对象
private static void flatMap() {
SparkConf conf = new SparkConf()
.setAppName("flatMap")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<String> lineList = Arrays.asList("hello you","hello me","hello world");
JavaRDD<String> lines = sc.parallelize(lineList);
//对RDD执行flatMap算子,将每一行文本,拆分为多个单词
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
//在这里,传入第一行,hello,you
//返回的是一个Iterable<String>(hello,you)
@Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
words.foreach(new VoidFunction<String>() {
@Override
public void call(String t) throws Exception {
System.out.println(t);
}
});
sc.close();
}
4.groupByKey算子
private static void groupByKey() {
SparkConf conf = new SparkConf()
.setAppName("groupByKey")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<String, Integer>> scoreList = Arrays.asList(
new Tuple2<String, Integer>("class1", 80),
new Tuple2<String, Integer>("class2", 90),
new Tuple2<String, Integer>("class1", 97),
new Tuple2<String, Integer>("class2", 89));
JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
//针对scoresRDD,执行groupByKey算子,对每个班级的成绩进行分组
//相当于是,一个key join上的所有value,都放到一个Iterable里面去了
JavaPairRDD<String, Iterable<Integer>> groupedScores = scores.groupByKey();
groupedScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {
@Override
public void call(Tuple2<String, Iterable<Integer>> t)
throws Exception {
System.out.println("class:" + t._1);
Iterator<Integer> ite = t._2.iterator();
while(ite.hasNext()) {
System.out.println(ite.next());
}
}
});
}
5.reduceByKey算子
private static void reduceByKey() {
SparkConf conf = new SparkConf()
.setAppName("reduceByKey")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<String, Integer>> scoreList = Arrays.asList(
new Tuple2<String, Integer>("class1", 80),
new Tuple2<String, Integer>("class2", 90),
new Tuple2<String, Integer>("class1", 97),
new Tuple2<String, Integer>("class2", 89));
JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
//reduceByKey算法返回的RDD,还是JavaPairRDD<key,value>
JavaPairRDD<String, Integer> totalScores = scores.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
totalScores.foreach(new VoidFunction<Tuple2<String,Integer>>() {
@Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t._1 + ":" + t._2);
}
});
sc.close();
}
6.sortByKey算子
private static void sortByKey() {
SparkConf conf = new SparkConf()
.setAppName("sortByKey")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<Integer, String>> scoreList = Arrays.asList(
new Tuple2<Integer, String>(78, "marry"),
new Tuple2<Integer, String>(89, "tom"),
new Tuple2<Integer, String>(72, "jack"),
new Tuple2<Integer, String>(86, "leo"));
JavaPairRDD<Integer, String> scores = sc.parallelizePairs(scoreList);
JavaPairRDD<Integer, String> sortedScores = scores.sortByKey();
sortedScores.foreach(new VoidFunction<Tuple2<Integer,String>>() {
@Override
public void call(Tuple2<Integer, String> t) throws Exception {
System.out.println(t._1 + ":" + t._2);
}
});
sc.close();
}
7.join算子
join算子用于关联两个RDD,join以后,会根据key进行join,并返回JavaPairRDD。JavaPairRDD的第一个泛型类型是之前两个JavaPairRDD的key类型,因为通过key进行join的。第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型
private static void join() {
SparkConf conf = new SparkConf()
.setAppName("join")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<Integer, String>> studentList = Arrays.asList(
new Tuple2<Integer, String>(1, "tom"),
new Tuple2<Integer, String>(2, "jack"),
new Tuple2<Integer, String>(3, "marry"),
new Tuple2<Integer, String>(4, "leo"));
List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
new Tuple2<Integer, Integer>(1, 78),
new Tuple2<Integer, Integer>(2, 87),
new Tuple2<Integer, Integer>(3, 89),
new Tuple2<Integer, Integer>(4, 98));
//并行化两个RDD
JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);;
JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
//使用join算子关联两个RDD
//join以后,会根据key进行join,并返回JavaPairRDD
//JavaPairRDD的第一个泛型类型,之前两个JavaPairRDD的key类型,因为通过key进行join的
//第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型
JavaPairRDD<Integer, Tuple2<String, Integer>> studentScores = students.join(scores);
//打印
studentScores.foreach(new VoidFunction<Tuple2<Integer,Tuple2<String,Integer>>>() {
@Override
public void call(Tuple2<Integer, Tuple2<String, Integer>> t)
throws Exception {
System.out.println("student id:" + t._1);
System.out.println("student name:" + t._2._1);
System.out.println("student score:" + t._2._2);
System.out.println("==========================");
}
});
sc.close();
}
更深的方法参见:
http://blog.csdn.net/liulingyuan6/article/details/53397780
http://blog.csdn.net/liulingyuan6/article/details/53410832
https://www.2cto.com/net/201608/543044.html