举例说明
TensorFlow中的变量一般就是模型的参数。当模型复杂的时候共享变量会无比复杂。
官网给了一个case,当创建两层卷积的过滤器时,每输入一次图片就会创建一次过滤器对应的变量,但是我们希望所有图片都共享同一过滤器变量,一共有4个变量:conv1_weights,conv1_biases,conv2_weights, and conv2_biases。
通常的做法是将这些变量设置为全局变量。但是存在的问题是打破封装性,这些变量必须文档化被其他代码文件引用,一旦代码变化,调用方也可能需要变化。
还有一种保证封装性的方式是将模型封装成类。
不过TensorFlow提供了Variable Scope 这种独特的机制来共享变量。这个机制涉及两个主要函数:
1
2
|
tf.get_variable(<name>, <shape>, <initializer>) 创建或返回给定名称的变量
tf.variable_scope(<scope_name>) 管理传给get_variable()的变量名称的作用域
|
在下面的代码中,通过tf.get_variable()创建了名称分别为weights和biases的两个变量。
1
2
3
4
5
6
7
8
9
10
|
def conv_relu( input , kernel_shape, bias_shape):
# Create variable named "weights".
weights = tf.get_variable( "weights" , kernel_shape,
initializer = tf.random_normal_initializer())
# Create variable named "biases".
biases = tf.get_variable( "biases" , bias_shape,
initializer = tf.constant_initializer( 0.0 ))
conv = tf.nn.conv2d( input , weights,
strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' )
return tf.nn.relu(conv + biases)
|
但是我们需要两个卷积层,这时可以通过tf.variable_scope()指定作用域进行区分,如with tf.variable_scope("conv1")这行代码指定了第一个卷积层作用域为conv1,
在这个作用域下有两个变量weights和biases。
1
2
3
4
5
6
7
|
def my_image_filter(input_images):
with tf.variable_scope( "conv1" ):
# Variables created here will be named "conv1/weights", "conv1/biases".
relu1 = conv_relu(input_images, [ 5 , 5 , 32 , 32 ], [ 32 ])
with tf.variable_scope( "conv2" ):
# Variables created here will be named "conv2/weights", "conv2/biases".
return conv_relu(relu1, [ 5 , 5 , 32 , 32 ], [ 32 ])
|
最后在image_filters这个作用域重复使用第一张图片输入时创建的变量,调用函数reuse_variables(),代码如下:
1
2
3
4
|
with tf.variable_scope( "image_filters" ) as scope:
result1 = my_image_filter(image1)
scope.reuse_variables()
result2 = my_image_filter(image2)
|
tf.get_variable()工作机制
tf.get_variable()工作机制是这样的:
当tf.get_variable_scope().reuse == False,调用该函数会创建新的变量
1
2
3
|
with tf.variable_scope( "foo" ):
v = tf.get_variable( "v" , [ 1 ])
assert v.name = = "foo/v:0"
|
当tf.get_variable_scope().reuse == True,调用该函数会重用已经创建的变量
1
2
3
4
5
|
with tf.variable_scope( "foo" ):
v = tf.get_variable( "v" , [ 1 ])
with tf.variable_scope( "foo" , reuse = True ):
v1 = tf.get_variable( "v" , [ 1 ])
assert v1 is v
|
变量都是通过作用域/变量名来标识,后面会看到作用域可以像文件路径一样嵌套。
tf.variable_scope理解
tf.variable_scope()用来指定变量的作用域,作为变量名的前缀,支持嵌套,如下:
1
2
3
4
|
with tf.variable_scope( "foo" ):
with tf.variable_scope( "bar" ):
v = tf.get_variable( "v" , [ 1 ])
assert v.name = = "foo/bar/v:0"
|
当前环境的作用域可以通过函数tf.get_variable_scope()获取,并且reuse标志可以通过调用reuse_variables()设置为True,这个非常有用,如下
1
2
3
4
5
|
with tf.variable_scope( "foo" ):
v = tf.get_variable( "v" , [ 1 ])
tf.get_variable_scope().reuse_variables()
v1 = tf.get_variable( "v" , [ 1 ])
assert v1 is v
|
作用域中的resuse默认是False,调用函数reuse_variables()可设置为True,一旦设置为True,就不能返回到False,并且该作用域的子空间reuse都是True。如果不想重用变量,那么可以退回到上层作用域,相当于exit当前作用域,如
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
with tf.variable_scope( "root" ):
# At start, the scope is not reusing.
assert tf.get_variable_scope().reuse = = False
with tf.variable_scope( "foo" ):
# Opened a sub-scope, still not reusing.
assert tf.get_variable_scope().reuse = = False
with tf.variable_scope( "foo" , reuse = True ):
# Explicitly opened a reusing scope.
assert tf.get_variable_scope().reuse = = True
with tf.variable_scope( "bar" ):
# Now sub-scope inherits the reuse flag.
assert tf.get_variable_scope().reuse = = True
# Exited the reusing scope, back to a non-reusing one.
assert tf.get_variable_scope().reuse = = False
|
一个作用域可以作为另一个新的作用域的参数,如:
1
2
3
4
5
6
7
8
9
|
with tf.variable_scope( "foo" ) as foo_scope:
v = tf.get_variable( "v" , [ 1 ])
with tf.variable_scope(foo_scope):
w = tf.get_variable( "w" , [ 1 ])
with tf.variable_scope(foo_scope, reuse = True ):
v1 = tf.get_variable( "v" , [ 1 ])
w1 = tf.get_variable( "w" , [ 1 ])
assert v1 is v
assert w1 is w
|
不管作用域如何嵌套,当使用with tf.variable_scope()打开一个已经存在的作用域时,就会跳转到这个作用域。
1
2
3
4
5
6
7
|
with tf.variable_scope( "foo" ) as foo_scope:
assert foo_scope.name = = "foo"
with tf.variable_scope( "bar" ):
with tf.variable_scope( "baz" ) as other_scope:
assert other_scope.name = = "bar/baz"
with tf.variable_scope(foo_scope) as foo_scope2:
assert foo_scope2.name = = "foo" # Not changed.
|
variable scope的Initializers可以创递给子空间和tf.get_variable()函数,除非中间有函数改变,否则不变。
1
2
3
4
5
6
7
8
9
10
11
|
with tf.variable_scope( "foo" , initializer = tf.constant_initializer( 0.4 )):
v = tf.get_variable( "v" , [ 1 ])
assert v. eval () = = 0.4 # Default initializer as set above.
w = tf.get_variable( "w" , [ 1 ], initializer = tf.constant_initializer( 0.3 )):
assert w. eval () = = 0.3 # Specific initializer overrides the default.
with tf.variable_scope( "bar" ):
v = tf.get_variable( "v" , [ 1 ])
assert v. eval () = = 0.4 # Inherited default initializer.
with tf.variable_scope( "baz" , initializer = tf.constant_initializer( 0.2 )):
v = tf.get_variable( "v" , [ 1 ])
assert v. eval () = = 0.2 # Changed default initializer.
|
算子(ops)会受变量作用域(variable scope)影响,相当于隐式地打开了同名的名称作用域(name scope),如+这个算子的名称为foo/add
1
2
3
|
with tf.variable_scope( "foo" ):
x = 1.0 + tf.get_variable( "v" , [ 1 ])
assert x.op.name = = "foo/add"
|
除了变量作用域(variable scope),还可以显式打开名称作用域(name scope),名称作用域仅仅影响算子的名称,不影响变量的名称。另外如果tf.variable_scope()传入字符参数,创建变量作用域的同时会隐式创建同名的名称作用域。如下面的例子,变量v的作用域是foo,而算子x的算子变为foo/bar,因为有隐式创建名称作用域foo
1
2
3
4
5
6
|
with tf.variable_scope( "foo" ):
with tf.name_scope( "bar" ):
v = tf.get_variable( "v" , [ 1 ])
x = 1.0 + v
assert v.name = = "foo/v:0"
assert x.op.name = = "foo/bar/add"
|
注意: 如果tf.variable_scope()传入的不是字符串而是scope对象,则不会隐式创建同名的名称作用域。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://www.cnblogs.com/MY0213/p/9208503.html