题意
思路
对于 \(\text{P1}\) 的档,首先可以看出 \(O(n^3)\) 的方法,即用 \(O(n^3)\) 的 \(\text{DP}\) 判断合法性以及记录路径。具体是这样的,因为括号匹配可以用一个弹栈的模型去表示(前括号入,后括号弹),用一个整数就可以表示当前的匹配状态,所以用 \(dp_{i,j,k}\) 表示第 \(i\) 个括号,忽视蓝色括号栈中有 \(j\) 个前括号,忽视红色括号栈中有 \(k\) 个前括号。则如果加入一个红前括号,则 \(j\) 加一;若加入一个蓝前括号,则 \(k\) 加一;若加入一个绿前括号,则 \(j,k\) 均加一。后括号同理。
从这个转移来看,似乎就是一个走棋盘的模型,但是单看走棋盘似乎也看不出什么。那么把棋盘拍扁成一维,只保存当前位置到起点的距离。设 \((0,0)\) 在最左上角,那么向右或下走距离加 \(1\) ,右下则加 \(2\) ,反之同理。不难发现,如果存在把距离变回零的方案,则棋盘上可以走回 \((0,0)\) 的方案肯定可以构造出来。
一顿操作,问题变成了给定一个加减号序列,你需要在里面适当位置填上 \(1\) 或 \(2\) ,满足任意前缀大于等于 \(0\) ,最终总和等于 \(0\) 。
这时候,贪心策略也渐渐显然,通过维护某一时刻最大的前缀 \(u\) ,最小的前缀 \(d\) 。扫到某一时刻,碰到加号(左括号)则 \(u+2,d+1\),碰到减号(右括号)则 \(u-1,d-2\) ,最大前缀小于零则要求一无法满足,而最小前缀小于零就补到零(表示可以将其中一个的 \(-2\) 变成了 \(-1\) ),最后得到的 \(d\) 不是零就说明加号过多,要求二无法满足,同样不合法。
我们得到的 \(u\) 就告诉我们如果只有 \(+2,-1\) 时,最后会是几,那我们就倒着扫这么多个数,把 \(+2\) 变成 \(+1\) ,\(-1\) 变成 \(-2\) 。
这样就得到了这个加减号序列,最后我们只用把 \(+1\) 换成红蓝交替的前括号,\(-1\) 换成红蓝交替的后括号,\(+2,-2\) 分别换成绿色前后括号即可。
会 \(O(n)\) 判断合法性,就直接按照这个 \(\text{DP}\) 就可以切 \(\text{P2}\) 档了,可以直接看代码。
代码
#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
template<typename T,typename _T>inline bool chk_min(T &x,const _T y){return y<x?x=y,1:0;}
template<typename T,typename _T>inline bool chk_max(T &x,const _T y){return x<y?x=y,1:0;}
typedef long long ll;
namespace Subtask1
{
const int N=1e6+5;
char str[N];
int ans[N];
int n;
int check()
{
int d=0,u=0;
FOR(i,1,n)
{
if(str[i]=='(')d+=1,u+=2;
else
{
d-=2,u-=1;
chk_max(d,0);
if(u<0)return -1;
}
}
if(d>0)return -1;
return u;
}
void Solve()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%s",str+1);
n=strlen(str+1);
int res=check();
if(res==-1){printf("impossible\n");continue;}
FOR(i,1,n)ans[i]=0;
int flg=-1;
if(res)DOR(i,n,1)
{
if(str[i]=='(')ans[i]=flg,flg=-flg;
else ans[i]=2;
res--;
if(!res)break;
}
flg=-1;
FOR(i,1,n)if(str[i]==')')
{
if(ans[i]==2)break;
ans[i]=flg,flg=-flg;
}
FOR(i,1,n)
{
if(ans[i]==1)putchar('R');
else if(ans[i]==-1)putchar('B');
else putchar('G');
}
puts("");
}
}
};
namespace Subtask2
{
const int P=1e9+7;
const int N=305;
int dp[N][N][N<<1];
int ans[N];
void pls(int &x,int y){x+=y;if(x>=P)x-=P;}
void Solve()
{
memset(dp,0,sizeof(dp));
dp[0][0][0]=1;
FOR(i,0,299)
{
FOR(j,0,i)FOR(k,0,2*i)
{
pls(dp[i+1][j+1][k+2],dp[i][j][k]);
if(k)pls(dp[i+1][std::max(0,j-2)][k-1],dp[i][j][k]);
}
FOR(j,0,2*i)pls(ans[i+1],dp[i+1][0][j]);
}
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
printf("%d\n",ans[n]);
}
}
};
int main()
{
int knd;
scanf("%d",&knd);
if(knd==1)Subtask1::Solve();
else if(knd==2)Subtask2::Solve();
return 0;
}
BalkanOI 2018 Parentrises(贪心+基础DP)的更多相关文章
-
「BalkanOI 2018 Day2」Parentrises
「BalkanOI 2018 Day2」Parentrises part1 显然可以直接贪心. 右括号记-1,左括号记1. 默认起始全部绿色,不染色. 策略如下: 从左往右扫,如果右括号个数大于左括号 ...
-
基础dp
队友的建议,让我去学一学kuangbin的基础dp,在这里小小的整理总结一下吧. 首先我感觉自己还远远不够称为一个dp选手,一是这些题目还远不够,二是定义状态的经验不足.不过这些题目让我在一定程度上加 ...
-
贪心/构造/DP 杂题选做Ⅱ
由于换了台电脑,而我的贪心 & 构造能力依然很拉跨,所以决定再开一个坑( 前传: 贪心/构造/DP 杂题选做 u1s1 我预感还有Ⅲ(欸,这不是我在多项式Ⅱ中说过的原话吗) 24. P5912 ...
-
poj2709 贪心基础
D - 贪心 基础 Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:65536KB 64bi ...
-
uva11292贪心基础题目
C - 贪心 基础 Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:65536KB 64bi ...
-
hdu 1009 贪心基础题
B - 贪心 基础 Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:32768KB 64bi ...
-
L贪心基础
<span style="color:#330099;">/* L - 贪心 基础 Time Limit:1000MS Memory Limit:65536KB 64b ...
-
ALGO-13_蓝桥杯_算法训练_拦截导弹(贪心,DP)
问题描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...
-
基础DP(初级版)
本文主要内容为基础DP,内容来源为<算法导论>,总结不易,转载请注明出处. 后续会更新出kuanbin关于基础DP的题目...... 动态规划: 动态规划用于子问题重叠的情况,即不同的子问 ...
随机推荐
-
Redhat 7 或者 CentOS 7 密码破解
1.在如下界面按 e 2.在 linux16 这一行的最后面添加 rd.break,然后按 ctrl + x 进入单用户模式 3.以读写的方式重新挂载 sysroot 4.切换到 sysroot 目录 ...
-
14. 星际争霸之php设计模式--状态模式
题记==============================================================================本php设计模式专辑来源于博客(jymo ...
-
PDF表单域(FormField)在HTML显示与提交数据到服务器
1.Adobe Arobat Pro等可以编辑表单域,只有几种控件: 2.展示PDF,可用PdfObject.js,Chrome自带? @{ViewBag.Title = @ViewBag.aaa;} ...
-
JavaScript中的property和attribute
property,attribute都作“属性”解,但是attribute更强调区别于其他事物的特质/特性. 而在JavaScript中,property和attribute更是有明显的区别.众所周知 ...
-
部署SharePoint解决方式包时遇到的问题
部署SharePoint解决方式包时遇到的问题 近期我在使用STSADM.EXE命令部署解决方式包的时候.遇到一个问题.很的难搞. 创建WSP文件非常easy.加入到解决方式库也非常e ...
-
storm.yaml 配置项
配置项 配置说明 storm.zookeeper.servers ZooKeeper服务器列表 storm.zookeeper.port ZooKeeper连接端口 storm.local.dir s ...
-
修改maven本地仓库的默认地址
由于maven默认仓库地址为C盘,所以缓存jar文件多了会占用掉C盘很多空间,鉴于此可更改maven仓库地址来避免. 1. 打开maven解压后目录,找到conf文件夹中的settion.xml文 ...
-
Visual Studio 开发(二):VS 2017配置FFmpeg开发环境
在上篇文章Visual Studio 开发(一):安装配置Visual Studio Code 中,我们讲了一下如何配置VS CODE,来编写和调试C的代码.如果你已经使用VS Code回顾和复习好C ...
-
【BZOJ1565】【NOI2009】植物大战僵尸 网络流 最大权闭合子图
题目大意 给你一个\(n\times m\)的地图,每个格子上都有一颗植物,有的植物能保护其他植物.僵尸从右往左进攻,每吃掉一颗植物就可以得到\(a_{i,j}\)的收益(\(a_{i,j}\)可 ...
-
arya-sites模块的主要类
Site类,生成路由, - 方法:url,get_urls, register, login,logout - 字段:_registry = {} Config,基础配置类,主要用 ...