vijos1891 学姐的逛街计划(线性规划)

时间:2023-12-10 16:11:20
P1891学姐的逛街计划
  • 描述

doc 最近太忙了, 每天都有课. 这不怕, doc 可以请假不去上课.
偏偏学校又有规定, 任意连续 n 天中, 不得请假超过 k 天.

doc 很忧伤, 因为他还要陪学姐去逛街呢.

后来, doc发现, 如果自己哪一天智商更高一些, 陪学姐逛街会得到更多的好感度.
现在 doc 决定做一个实验来验证自己的猜想, 他拜托 小岛 预测出了 自己 未来 3n 天中, 每一天的智商.
doc 希望在之后的 3n 天中选出一些日子来陪学姐逛街, 要求在不违反校规的情况下, 陪学姐逛街的日子自己智商的总和最大.

可是, 究竟这个和最大能是多少呢?

格式

输入格式

第一行给出两个整数, n 和 k, 表示我们需要设计之后 3n 天的逛街计划, 且任意连续 n 天中不能请假超过 k 天.
第二行给出 3n 个整数, 依次表示 doc 每一天的智商有多少. 所有数据均为64位无符号整数

输出格式

输出只有一个整数, 表示可以取到的最大智商和.

样例1

样例输入1[复制]

5 3
14 21 9 30 11 8 1 20 29 23 17 27 7 8 35

样例输出1[复制]

195

限制

对于 20% 的数据, 1 <= n <= 12 , k = 3.
对于 70% 的数据, 1 <= n <= 40 .
对于 100% 的数据, 1 <= n <= 200 , 1 <= k <= 10.

【思路】

  一道线性规划的题目,好神奇=-=。

  这是题解中的思路:

from qiuzanlin

设第i天是否去逛街为a[i],c[i]表示第i天的智商,a[i]=1表示去逛街,a[i]=0表示不去
则可得2n个不等式
a[1]+a[2]+...+a[n]<=k
a[2]+a[3]+...+a[n+1]<=k
...
a[2n+1]+....+a[3n]<=k
求c[1]a[1]+c[2]a[2]+...+c[3n]*a[3n]的最大值
添加一个辅助变量
a[1]+a[2]+...+a[n]+y[1]=k
a[2]+a[3]+...+a[n+1]+y[2]=k
...
a[2n+1]+....+a[3n]+y[2n+1]=k
0<=y[i]<=k
将上述不等式相邻两个相减
y[1]+a[1]=a[n+1]+y[2]。。。。。。。。。1
y[2]+a[2]=a[n+2]+y[3]。。。。。。。。。2
......
y[n+1]+a[n+1]=a[2n+1]+y[n+2]。。。。。。。n+1
......
y[2n]+a[2n]=a[3n]+y[2n+1]。。。。。。。。2n
根据网络中每个节点流入量等于流出量的性质
将上述等式编号并抽象成网络中的点,变量a[i]和y[i]抽象为网络中的有向边(弧)
问题等价于求最大费用最大流
以a[n+1]为例 可以看成是节点1部分流出量和节点n+1的部分流入量于是可以建边从n+1到1
故根据这些等式可以建图
设源点为0,汇点为2n+3
i到n+i连一条弧,流量上限为1,费用为c[n+i] 1<=i<=n
i到i+1连一条弧,流量上限为k,费用为0(即为辅助变量y)1<=i<=2n-1
这时发现题目的k还没用上,
于是发现上述等式成立必需满足这两个等式
a[1]+a[2]+...+a[n]+y[1]=k。。。。。2n+1
a[2n+1]+....+a[3n]+y[2n+1]=k。。。。。2n+2
于是建一个节点2n+1
为了满足2n+1式
则由源点向节点2n+1连一条流量上限为k的边,费用为0。
由节点2n+1向i连一条流量上限为1的边,费用为ci
同理建一个节点2n+2
为了满足2n+2式则由节点2n+2向汇点连一条流量上限为k的边,费用为0。
由节点i向2n+2连一条流量上限为1的边,费用为ci
建图完毕,剩下就是套算法。

【代码】

 #include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; typedef long long LL ;
const int maxn = +;
const int INF = 1e9; struct Edge{ int u,v,cap,flow,cost;
}; struct MCMF {
int n,m,s,t;
int inq[maxn],a[maxn],d[maxn],p[maxn];
vector<int> G[maxn];
vector<Edge> es; void init(int n) {
this->n=n;
es.clear();
for(int i=;i<n;i++) G[i].clear();
}
void AddEdge(int u,int v,int cap,int cost) {
es.push_back((Edge){u,v,cap,,cost});
es.push_back((Edge){v,u,,,-cost});
m=es.size();
G[u].push_back(m-);
G[v].push_back(m-);
} bool SPFA(int s,int t,int& flow,LL& cost) {
for(int i=;i<n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
d[s]=; inq[s]=; p[s]=; a[s]=INF;
queue<int> q; q.push(s);
while(!q.empty()) {
int u=q.front(); q.pop(); inq[u]=;
for(int i=;i<G[u].size();i++) {
Edge& e=es[G[u][i]];
int v=e.v;
if(e.cap>e.flow && d[v]>d[u]+e.cost) {
d[v]=d[u]+e.cost;
p[v]=G[u][i];
a[v]=min(a[u],e.cap-e.flow); //min(a[u],..)
if(!inq[v]) { inq[v]=; q.push(v);
}
}
}
}
if(d[t]==INF) return false;
flow+=a[t] , cost+=a[t]*d[t];
for(int x=t; x!=s; x=es[p[x]].u) {
es[p[x]].flow+=a[t]; es[p[x]^].flow-=a[t];
}
return true;
}
int Mincost(int s,int t,LL& cost) {
int flow=; cost=;
while(SPFA(s,t,flow,cost)) ;
return flow;
}
} mc; int n,m,k;
int a[maxn]; int main() {
scanf("%d%d",&n,&k);
FOR(i,,*n) scanf("%d",&a[i]);
mc.init(*n+);
int s=,t=*n+; FOR(i,,n+) mc.AddEdge(s,i,,-a[i-]);
FOR(i,n+,*n+) mc.AddEdge(i-n,i,,-a[i-]);
FOR(i,n+,*n+) mc.AddEdge(i,*n+,,-a[i-+n]);
FOR(i,,*n+) mc.AddEdge(i-,i,k,);
mc.AddEdge(s,,k,);
mc.AddEdge(*n+,t,k,); LL cost;
mc.Mincost(s,t,cost);
printf("%lld",-cost);
return ;
}