numpy是无法直接判断出由数值与字符混合组成的数组中的数值型数据的,因为由数值类型和字符类型组成的numpy数组已经不是数值类型的数组了,而是dtype='<U11'。
1、math.isnan也不行,它只能判断float("nan"):
1
2
3
4
5
6
7
8
9
10
|
>>> import math
>>> math.isnan( 1 )
False
>>> math.isnan( 'a' )
Traceback (most recent call last):
File "<stdin>" , line 1 , in <module>
TypeError: a float is required
>>> math.isnan( float ( "nan" ))
True
>>>
|
2、np.isnan不可用,因为np.isnan只能用于数值型与np.nan组成的numpy数组:
1
2
3
4
5
6
7
8
9
10
11
12
|
>>> import numpy as np
>>> test1 = np.array([ 1 , 2 , 'aa' , 3 ])
>>> np.isnan(test1)
Traceback (most recent call last):
File "<stdin>" , line 1 , in <module>
TypeError: ufunc 'isnan' not supported for the input types, and the inputs could
not be safely coerced to any supported types according to the casting rule ''sa
fe''
>>> test2 = np.array([ 1 , 2 ,np.nan, 3 ])
>>> np.isnan(test2)
array([ False , False , True , False ], dtype = bool )
>>>
|
解决办法:
方法1:将numpy数组转换为python的list,然后通过filter过滤出数值型的值,再转为numpy, 但是,有一个严重的问题,无法保证原来的索引
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
>>> import numpy as np
>>> test1 = np.array([ 1 , 2 , 'aa' , 3 ])
>>> list1 = list (test1)
>>> def filter_fun(x):
... try :
... return isinstance ( float (x),( float ))
... except :
... return False
...
>>> list ( filter (filter_fun,list1))
[ '1' , '2' , '3' ]
>>> np.array( filter (filter_fun,list1))
array(< filter object at 0x0339CA30 >, dtype = object )
>>> np.array( list ( filter (filter_fun,list1)))
array([ '1' , '2' , '3' ],
dtype = '<U1' )
>>> np.array([ float (x) for x in filter (filter_fun,list1)])
array([ 1. , 2. , 3. ])
>>>
|
方法2:利用map制作bool数组,然后再过滤数据和索引:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
>>> import numpy as np
>>> test1 = np.array([ 1 , 2 , 'aa' , 3 ])
>>> list1 = list (test1)
>>> def filter_fun(x):
... try :
... return isinstance ( float (x),( float ))
... except :
... return False
...
>>> import pandas as pd
>>> test = pd.DataFrame(test1,index = [ 1 , 2 , 3 , 4 ])
>>> test
0
1 1
2 2
3 aa
4 3
>>> index = test.index
>>> index
Int64Index([ 1 , 2 , 3 , 4 ], dtype = 'int64' )
>>> bool_index = map (filter_fun,list1)
>>> bool_index = list (bool_index) #bool_index这样的迭代结果只能list一次,一次再list时会是空,所以保存一下list的结果
>>> bool_index
[ True , True , False , True ]
>>> new_data = test1[np.array(bool_index)]
>>> new_data
array([ '1' , '2' , '3' ],
dtype = '<U11' )
>>> new_index = index[np.array(bool_index)]
>>> new_index
Int64Index([ 1 , 2 , 4 ], dtype = 'int64' )
>>> test2 = pd.DataFrame(new_data,index = new_index)
>>> test2
0
1 1
2 2
4 3
>>>
|
以上这篇numpy判断数值类型、过滤出数值型数据的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/o1101574955/article/details/51698922