- 向任务传递定制参数
- 获取任务待定的信息
- 生成多个输出
- 与关系数据库交互
- 让输出做全局排序
属性
|
类型
|
描述
|
mapred.job.id | String | 作业ID |
mapred.jar | String | 作业目录中jar的位置 |
job.local.dir | String | 作业的本地空间 |
mapred.tip.id | String | 任务ID |
mapred.task.id | String | 任务重试ID |
mapred.task.is.map | Boolean | 标志量,表示是否为一个map任务 |
mapred.task.partition | Int | 作业内部的任务ID |
map.input.file | String | Mapper读取的文件路径 |
map.input.start | Long | 当前Mapper输入分片的文件偏移量 |
map.input.length | Long | 当前Mapper输入分片的字节数 |
mapred.work.output.dir | String | 任务的工作(即临时)输出目录 |
import java.io.IOException;
import java.util.Iterator; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.lib.MultipleTextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class MultiFile extends Configured implements Tool { public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, NullWritable, Text> { public void map(LongWritable key, Text value,
OutputCollector<NullWritable, Text> output,
Reporter reporter) throws IOException { output.collect(NullWritable.get(), value);
}
} public static class PartitionByCountryMTOF
extends MultipleTextOutputFormat<NullWritable,Text>
{
protected String generateFileNameForKeyValue(NullWritable key,
Text value,
String inputfilename)
{
String[] arr = value.toString().split(",", -1);
String country = arr[4].substring(1,3);
return country+"/"+inputfilename;
}
} public int run(String[] args) throws Exception {
// Configuration processed by ToolRunner
Configuration conf = getConf(); // Create a JobConf using the processed conf
JobConf job = new JobConf(conf, MultiFile.class); // Process custom command-line options
Path in = new Path(args[0]);
Path out = new Path(args[1]);
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out); // Specify various job-specific parameters
job.setJobName("MultiFile");
job.setMapperClass(MapClass.class); job.setInputFormat(TextInputFormat.class);
job.setOutputFormat(PartitionByCountryMTOF.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(Text.class); job.setNumReduceTasks(0); // Submit the job, then poll for progress until the job is complete
JobClient.runJob(job); return 0;
} public static void main(String[] args) throws Exception {
// Let ToolRunner handle generic command-line options
int res = ToolRunner.run(new Configuration(), new MultiFile(), args); System.exit(res);
}
}
import java.io.IOException;
import java.util.Iterator; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.lib.MultipleTextOutputFormat;
import org.apache.hadoop.mapred.lib.MultipleOutputs;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class MultiFile extends Configured implements Tool { public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, NullWritable, Text> { private MultipleOutputs mos;
private OutputCollector<NullWritable, Text> collector; public void configure(JobConf conf) {
mos = new MultipleOutputs(conf);
} public void map(LongWritable key, Text value,
OutputCollector<NullWritable, Text> output,
Reporter reporter) throws IOException { String[] arr = value.toString().split(",", -1);
String chrono = arr[0] + "," + arr[1] + "," + arr[2];
String geo = arr[0] + "," + arr[4] + "," + arr[5]; collector = mos.getCollector("chrono", reporter);
collector.collect(NullWritable.get(), new Text(chrono));
collector = mos.getCollector("geo", reporter);
collector.collect(NullWritable.get(), new Text(geo));
} public void close() throws IOException {
mos.close();
}
} public int run(String[] args) throws Exception {
// Configuration processed by ToolRunner
Configuration conf = getConf(); // Create a JobConf using the processed conf
JobConf job = new JobConf(conf, MultiFile.class); // Process custom command-line options
Path in = new Path(args[0]);
Path out = new Path(args[1]);
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out); // Specify various job-specific parameters
job.setJobName("MultiFile");
job.setMapperClass(MapClass.class); job.setInputFormat(TextInputFormat.class);
// job.setOutputFormat(PartitionByCountryMTOF.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(Text.class);
job.setNumReduceTasks(0); MultipleOutputs.addNamedOutput(job,
"chrono",
TextOutputFormat.class,
NullWritable.class,
Text.class);
MultipleOutputs.addNamedOutput(job,
"geo",
TextOutputFormat.class,
NullWritable.class,
Text.class); // Submit the job, then poll for progress until the job is complete
JobClient.runJob(job); return 0;
} public static void main(String[] args) throws Exception {
// Let ToolRunner handle generic command-line options
int res = ToolRunner.run(new Configuration(), new MultiFile(), args); System.exit(res);
}
}
[Hadoop in Action] 第7章 细则手册的更多相关文章
-
[Hadoop in Action] 第6章 编程实践
Hadoop程序开发的独门绝技 在本地,伪分布和全分布模式下调试程序 程序输出的完整性检查和回归测试 日志和监控 性能调优 1.开发MapReduce程序 [本地模式] 本地模式 ...
-
[Hadoop in Action] 第5章 高阶MapReduce
链接多个MapReduce作业 执行多个数据集的联结 生成Bloom filter 1.链接MapReduce作业 [顺序链接MapReduce作业] mapreduce-1 | mapr ...
-
[Hadoop in Action] 第4章 编写MapReduce基础程序
基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...
-
[hadoop in Action] 第3章 Hadoop组件
管理HDFS中的文件 分析MapReduce框架中的组件 读写输入输出数据 1.HDFS文件操作 [命令行方式] Hadoop的文件命令采取的形式为: hadoop fs -cmd < ...
-
[Hadoop in Action] 第2章 初识Hadoop
Hadoop的结构组成 安装Hadoop及其3种工作模式:单机.伪分布和全分布 用于监控Hadoop安装的Web工具 1.Hadoop的构造模块 (1)NameNode(名字节点) ...
-
[Hadoop in Action] 第1章 Hadoop简介
编写可扩展.分布式的数据密集型程序和基础知识 理解Hadoop和MapReduce 编写和运行一个基本的MapReduce程序 1.什么是Hadoop Hadoop是一个开源的框架,可编写和运 ...
-
Hadoop专业解决方案-第12章 为Hadoop应用构建企业级的安全解决方案
一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,春节期间,项目进度有所延迟,不过元宵节以后大家已经步入正轨, 目前第12章 为Hadoop应用构 ...
-
Hadoop专业解决方案-第1章 大数据和Hadoop生态圈
一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第1章 大数据和Hadoop生态圈小组已经翻译完成,在此 ...
-
Hadoop专业解决方案-第13章 Hadoop的发展趋势
一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第13章 Hadoop的发展趋势小组已经翻译完成,在此对 ...
随机推荐
-
Java多线程-线程的调度(合并)
线程的合并的含义就是将几个并行线程的线程合并为一个单线程执行,应用场景是当一个线程必须等待另一个线程执行完毕才能执行时可以使用join方法. join为非静态方法,定义如下:void join(): ...
-
notepad++使用技巧及插件汇总
NppAutoIndent 自动缩进CCompletion 自动补全.TextFX 插件nppFTP 运行程序 ============================================ ...
-
WPF WebBrowser 不可见问题的解析[转]
问题概述: 1.在Xaml中加入WebBrowser(不论是WPF中的控件,还是Winform中的控件) 2.设置Window Background="Transparent" A ...
-
Python Tcp Socket
socket(套接字),传输层通信的端点,由IP和端口号组成(IP,Port),可以通过socket精确地找到服务器上的进程并与之通信 python2.6实现,基于AF_INET(网络套接字) 类型S ...
-
客户端存储 API
介绍两个在客户端存储数据的 API localStorage与sessionStorage 两个都是window对象的属性,利用这两个属性,可以在客户端存储一些数据 相比cookie,这种存储方式的优 ...
-
微信小程序 PHP后端form表单提交实例详解
微信小程序php后端form表单 https://www.cnblogs.com/tdalcn/p/7092716.html 1.小程序相对于之前的WEB+PHP建站来说,个人理解为只是将web放到了 ...
-
《Java技术》第二次作业--面向对象基础
(一)学习总结 1.什么是构造方法?什么是构造方法的重载?下面的程序是否可以通过编译?为什么? public class Test { public static void main(String a ...
-
在MinGW下编译ffmpeg
因为需要使用ffmpeg的相关库和执行文件,所以需要编译最新的ffmpeg代码.为了能在编译成Windows native执行程序(需要在.net中调用该执行程序),这里我们使用MinGW. 1,安装 ...
-
base64文件转MultipartFile文件
在一些项目中,上传图片或者文件过大,这个时候我们就要选择压缩文件,压缩到我们指定的范围内在上传到服务器,当然压缩也是可以放到服务器进行操作的,但是考虑到前端传输时间问题,所以我们一般都是放到前端压缩后 ...
-
antd-mobile Picker组件默认值
import { createForm } from "rc-form"; @createForm() class TopAdSlots extends Component { @ ...