前言
栈是什么,你可以理解为一种先入后出的数据结构(First In Last Out),一种操作受限的线性表...
C实现
借助与C语言中的void指针及函数指针,我们可以实现一个链式通用栈:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
|
/* stack.h */
#ifndef _STACK_H_
#define _STACK_H_
typedef struct stackNode {
void *value;
struct stackNode *next;
} stackNode;
typedef struct stack {
stackNode *top;
void (* free )( void *ptr);
unsigned long size;
} stack;
/* Functions implemented as macros */
#define stackTop(s) ((s)->top)
#define stackSize(s) ((s)->size)
#define stackSetFreeMethod(s, m) ((s)->free = (m))
#define stackGetFreeMethod(s) ((s)->free)
stack *stackCreate( void );
stack *stackPush(stack *stack, void *value);
stackNode *stackPop(stack *stack);
void stackClear(stack *stack);
#endif /* _STACK_H_ */
/* stack.c */
#include <stdlib.h>
#include "stack.h"
stack *stackCreate( void )
{
struct stack *stack;
if ((stack = ( struct stack *) malloc ( sizeof ( struct stack))) == NULL)
return NULL;
stack->top = NULL;
stack-> free = NULL;
stack->size = 0;
return stack;
}
stack *stackPush(stack *stack, void *value)
{
stackNode *node;
if ((node = (stackNode *) malloc ( sizeof (stackNode))) == NULL)
return NULL;
node->value = value;
node->next = (stack->size == 0) ? NULL : stack->top;
stack->top = node;
stack->size++;
return stack;
}
stackNode *stackPop(stack *stack)
{
stackNode *node;
node = stack->top;
if (stack->size != 0) {
stack->top = node->next;
stack->size--;
}
return node;
}
void stackClear(stack *stack)
{
unsigned long size;
stackNode *current, *next;
current = stack->top;
size = stack->size;
while (size--) {
next = current->next;
if (stack-> free ) stack-> free (current->value);
free (current);
current = next;
}
free (stack);
}
|
这里的实现附设了一个头节点,主要用于注册与栈节点操作相关的函数。我们把栈的大小信息也存了进去,这样就可以在O(1)的时间内获取当前栈大小了!
Python实现
在Python中,list其实可以直接作为栈使用,如果你只在它的一端进行操作的话。当然我们也可以简单封装一下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
class Stack( object ):
"""A stack encapsulation based on list."""
def __init__( self ):
self .items = []
def empty( self ):
return self .items = = []
def clear( self ):
del self .items[:]
@property
def size( self ):
return len ( self .items)
def push( self , item):
"""Add a new item to the top of the stack."""
self .items.insert( 0 , item)
def pop( self ):
"""Remove the top item from the stack."""
return self .items.pop( 0 )
def top( self ):
"""Return the top item from the stack but not
remove it.
"""
return self .items[ 0 ]
def __iter__( self ):
return iter ( self .items)
def __next__( self ):
return self .pop()
|
应用
下面介绍几个栈的典型应用。
括号匹配
给你一个算术表达式或者一段C代码,如何写一个程序验证它其中的括号是否匹配?借助栈,可以很容易实现。算法流程如下:
遍历字符:
1.如果是左括号,push入栈;
2. 如果是右括号,这时候如果栈为空,说明不匹配,如果栈不为空并且pop出栈的左括号与右括号类型不一样,说明不匹配;
遍历结束后,如果栈不为空,说明不匹配。
1
2
3
4
5
6
7
8
9
10
11
|
def check_pares( exp ):
"" "Check if parentheses match in a expression." ""
stack = Stack()
pares = { ')' : '(' , ']' : '[' , '}' : '{' }
for x in exp :
if x in '([{' :
stack.push(x)
elif x in ')]}' :
if stack.empty() or pares[x] != stack.pop():
return False
return True if stack.empty() else False
|
数制转换
以十进制转二进制为例:
1
2
3
4
5
6
7
8
9
10
|
def dec2bin(dec):
"" "Converting decimal number to binary string." ""
if dec == 0:
return '0'
stack = Stack()
while dec:
r = dec % 2
stack.push(r)
dec = dec // 2
return '' .join(str(digit) for digit in stack)
|
模拟递归
遍历二叉树算是经典的递归应用了。我们以先序遍历为例,递归版本的代码很容易写:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
def preorder_traversal(root):
"" "
1
/ \
2 3
/ \ \
4 5 6
"" "
if not root:
return
print(root.val)
preorder_traversal(root.lchild)
preorder_traversal(root.rchild)
|
下面是非递归的版本:
1
2
3
4
5
6
7
8
9
|
def preorder_traversal(root)
s = Stack()
while s.size or root:
if root:
print(root.val)
s.push(root)
root = root.lchild
else :
root = s.pop().rchild
|
总结
以上就是如何用C语言和Python实现栈及典型应用的全部内容,希望对大家的学习有所帮助,也希望大家继续支持服务器之家。