python实现图像随机裁剪的示例代码

时间:2022-10-18 17:09:44

实验条件:

  1. 从1张图像随机裁剪100张图像
  2. 裁剪出图像的大小为 60 x 60
  3. IoU 大于等于 th=0.6 的裁剪框用红色标出,其它裁剪框用蓝色标出
  4. IoU 比对原始区域用绿框标出

实验代码:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import cv2 as cv
import numpy as np
 
np.random.seed(0)
 
# get IoU overlap ratio
def iou(a, b):
    # get area of a
 area_a = (a[2] - a[0]) * (a[3] - a[1])
    # get area of b
 area_b = (b[2] - b[0]) * (b[3] - b[1])
 
    # get left top x of IoU
 iou_x1 = np.maximum(a[0], b[0])
    # get left top y of IoU
 iou_y1 = np.maximum(a[1], b[1])
    # get right bottom of IoU
 iou_x2 = np.minimum(a[2], b[2])
    # get right bottom of IoU
 iou_y2 = np.minimum(a[3], b[3])
 
    # get width of IoU
 iou_w = iou_x2 - iou_x1
    # get height of IoU
 iou_h = iou_y2 - iou_y1
 
    # get area of IoU
 area_iou = iou_w * iou_h
    # get overlap ratio between IoU and all area
 iou = area_iou / (area_a + area_b - area_iou)
 
 return iou
 
 
# crop and create database
def crop_bbox(img, gt, Crop_N=200, L=60, th=0.5):
 # get shape
 H, W, C = img.shape
 
 # each crop
 for i in range(Crop_N):
  # get left top x of crop bounding box
  x1 = np.random.randint(W - L)
  # get left top y of crop bounding box
  y1 = np.random.randint(H - L)
  # get right bottom x of crop bounding box
  x2 = x1 + L
  # get right bottom y of crop bounding box
  y2 = y1 + L
 
  # crop bounding box
  crop = np.array((x1, y1, x2, y2))
 
  # get IoU between crop box and gt
  _iou = iou(gt, crop)
 
  # assign label
  if _iou >= th:
   cv.rectangle(img, (x1, y1), (x2, y2), (0,0,255), 1)
   label = 1
  else:
   cv.rectangle(img, (x1, y1), (x2, y2), (255,0,0), 1)
   label = 0
 
 return img
 
# read image
img = cv.imread("../xiyi.jpg")
img1 = img.copy()
# gt bounding box
gt = np.array((87, 51, 169, 113), dtype=np.float32)
 
# get crop bounding box
img = crop_bbox(img, gt, Crop_N=100, L=60, th=0.6)
 
# draw gt
cv.rectangle(img, (gt[0], gt[1]), (gt[2], gt[3]), (0,255,0), 1)
cv.rectangle(img1,(gt[0], gt[1]), (gt[2], gt[3]), (0,255,0), 1)
 
cv.imshow("result1",img1)
cv.imshow("result", img)
cv.imwrite("out.jpg", img)
cv.waitKey(0)
cv.destroyAllWindows()

实验结果:

python实现图像随机裁剪的示例代码

以上就是python实现图像随机裁剪的示例代码的详细内容,更多关于python 图像裁剪的资料请关注服务器之家其它相关文章!

原文链接:https://www.cnblogs.com/wojianxin/p/12581240.html