一般做组合数的题目都要进行质因数的分解,我们一般是for循环对每个数进行质因数分解,大多数情况都不会超时,但极少数的情况下,题目会不允许这样的做法,所以我们需要学会一种更快的方法来求质因数。
我们一般的方法是对每个数进行质因数分解:
inline void calc(int x,int val)
{
int xx=x;
for(int i=;i*i<=xx;i++)
{
while(x%i==)//不断进行除法,找出多少的当前的质数
{
c[i]+=val;x/=i;
}
if(x==)break;
}
if(x>)c[x]+=val;//如果剩下的数也是个质数,那么这个质数也要加上val
}
但如果想要更快的分解,我们可以直接对n!进行分解:
首先先进行素数筛选,得出素数表
然后进行如下操作:
inline long long calc(int n,int x)//x表示想要求的质数,函数的作用是求出x的个数,n表示要求的n!(例:n=8表示8!)
{ long long cnt=;
for(long long i=x;i<=n;i*=x)//为了防止i的溢出,所以我们要开long long
{cnt+=n/i;
}
return cnt;
}
我们来一个样例说明一下:
1 2 3 4 5 6 7 8 我们求得在8!中2的个数
1 1 1 1 首先我们先计算出2的倍数的个数:8/2=4
1 1 其次我们计算出4的倍数的个数: 8/4=2(上面一个式子求出了第一层,现在求第二层)
1 最后我们解出第三层的2的个数: 8/8=1
我们把4+2+1=7,所以一共7个2出现了。
即:cnt(x)=[n/(x^1)]+[n/(x^2)]+[n/(x^3)]+...(直到x的次方大于n)
到这里我们可以发现:我们平时求的方法是一列一列求的(就是每一个数算一遍),而这个方法我们每一行每一行的求,虽然效果一样,但求起来速度很快。值得学习。
故做法:
1.先把素数表打好
2.for循环把小于n的每个质数进行一次运算,用数组记录
3.结束
非常快。
快速求出n!的质因数的个数的更多相关文章
-
JAVA输入一个整数,求出其所有质因数
首先得求出能整除A的数,再判断I是否是质数!!! import java.util.*; public class aa { public static void main(String[] args ...
-
tr循环,每行 2个数相加 求出和位第三个数赋值 (http://jsfiddle.net/hgeL44rz/113/)
<table id="tb"> <tr> <th>单价</th> <th>数量</th> <th> ...
-
如何求出数组中最小(或者最大)的k个数(least k问题)
输入n个整数,如何求出其中最小的k个数? 解法1. 当然最直观的思路是将数组排序,然后就可以找出其中最小的k个数了,时间复杂度以快速排序为例,是O(nlogn): 解法2. 借助划分(Partitio ...
-
对于给定的整数集合S,求出最大的d,使得a+b+c=d。
对于给定的整数集合S,求出最大的d,使得a+b+c=d.a,b,c,d互不相同,且都属于S.集合的元素个数小于等于2000个,元素的取值范围在[-2^28,2^28 - 1],假定可用内存空间为100 ...
-
输入n个数组,数组长度不等,每个数组取出一个数进行组合,求出所有的组合。
转载声明:原文转自http://www.cnblogs.com/xiezie/p/5511707.html 昨天晚上,有个朋友找到我,他在用matlab编程,但是遇到一个问题,解决不了. 问题如下: ...
-
快速判断&;求出区间相交的长度
有两个区间A[a1,b1], B[a2,b2],判断这两个区间有没有交集.我们可以分为两种思维来判断: /** *思路就是如果两个区间不相交,那么最大的开始端一定大于最小的结束端 **/ if(max ...
-
CodeForces 702B Powers of Two【二分/lower_bound找多少个数/给出一个数组 求出ai + aj等于2的幂的数对个数】
B. Powers of Two You are given n integers a1, a2, ..., an. Find the number of pairs of indexes i, ...
-
AJPFX:不用递归巧妙求出1000的阶乘所有零和尾部零的个数
package com.jonkey.test; import java.math.BigInteger; public class Test6 { /*** @param args* 需求:求出1 ...
-
C语言:找出一个大于给定整数m且紧随m的素数,-求出能整除x且不是偶数的数的个数,
//函数fun功能:找出一个大于给定整数m且紧随m的素数,并作为函数值返回. #include <stdlib.h> #include <conio.h> #include & ...
随机推荐
-
使用Word2013发布博客
步骤一.新建博客文章 打开Word软件,新建->博客文章(第一次在模板下面可能找不到,可以在搜索栏中搜索"博客",下次在首页就能直接找到). 步骤二.编辑博客文章 1.输入文 ...
-
distribution 中一直在运行 waitfor delay @strdelaytime 语句
Replication 自动创建来一个 Job:Replication monitoring refresher for distribution,这个Agent执行一个sp: dbo.sp_repl ...
-
maven exclusion 解决maven传递依赖中的版本冲突
传递依赖是maven最有特色的.最为方便的优点之一,可以省了很多配置.如a 依赖 b,b 依赖c 默认 a也会依赖 c.但是也会带来隐患,如版本冲突.当然maven也考虑到解决办法,可以使用exclu ...
-
Unicode 转成中文
代码转换如下: if __name__ == "__main__": data = "\u5c71\u5cb3\u548c\u4e00\u5207\u4e18\u9675 ...
-
Action配置
Action是一个逻辑控制器,并不直接对浏览器生成响应,而是返回指定逻辑视图(一个字符串). 不推荐在Action的name属性值中使用点(.)和中划线(-),有可能会引发一些未知异常. 1使用A ...
-
android jsonarray
Json数组是子元素的有序集合,每个子元素都有一个下标,可以根据下标操纵Json数组的子元素.类JsonArray是bantouyan-json库对Json数组的抽象,提供操纵Json数组的各种方法. ...
-
Centos6.7 64位安装配置kvm虚拟化
首先,需要我们的cpu支持虚拟化,有的机器支持但是并未在bios开启,这个需要事先开启. 1. Dell R710安装centos6.7 64位 ,Dell R710在开机后按F2进入BIOS,Pro ...
-
PL/SQL开发中动态SQL的使用方法
一般的PL/SQL程序设计中,在DML和事务控制的语句中可以直接使用SQL,但是DDL语句及系统控制语句却不能在PL/SQL中直接使用,要想实现在PL/SQL中使用DDL语句及系统控制语句,可以通过使 ...
-
TED #02#
Amanda Palmer: The art of asking 1. I think people have been obsessed with the wrong question, which ...
-
WebKit 渲染过程
webkit笔记,主要来自 朱永盛 <WebKit技术内幕> 学习笔记,转载就注明原著,该书是国内仅有的Webkit内核的书籍,学习的好导师,推荐有兴趣的朋友可以购买 Webkit渲染过程 ...