获取Tensor的维数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
>>> import tensorflow as tf
>>> tf.__version__
'1.2.0-rc1'
>>> x = tf.placeholder(dtype = float32,shape = [ 1 , 2 , 3 , 4 ])
>>> x = tf.placeholder(dtype = tf.float32,shape = [ 1 , 2 , 3 , 4 ])
>>> x.shape
TensorShape([Dimension( 1 ), Dimension( 2 ), Dimension( 3 ), Dimension( 4 )])
>>> x.get_shape()
TensorShape([Dimension( 1 ), Dimension( 2 ), Dimension( 3 ), Dimension( 4 )])
# 返回tuple
>>> x.shape[ 2 ]
Dimension( 3 )
>>> x.get_shape()[ 2 ]
Dimension( 3 )
# 获取具体维度数值
>>> x.shape[ 2 ].value
3
>>> x.get_shape()[ 2 ].value
3
# 也可以将TensorShape变量转化为list类型,然后直接按照索引取值
>>> x.shape.as_list()
[ 1 , 2 , 3 , 4 ]
>>> x.shape.as_list()
[ 1 , 2 , 3 , 4 ]
# 可以与int型数值比较
>>> x.shape[ 2 ] = = 3
True
>>> x.get_shape()[ 2 ] = = 3
True
|
以上这篇Tensorflow获取张量Tensor的具体维数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/tcx1992/article/details/80249992