HDU 3911 Black And White 分段树 题解

时间:2023-12-06 09:25:26
Problem Description
There are a bunch of stones on the beach; Stone color is white or black. Little Sheep has a magic brush, she can change the color of a continuous stone, black to white, white to black. Little Sheep like black very much, so she want to know the longest period
of consecutive black stones in a range [i, j].
Input
  There are multiple cases, the first line of each case is an integer n(1<= n <= 10^5), followed by n integer 1 or 0(1 indicates black stone and 0 indicates white stone), then is an integer M(1<=M<=10^5) followed by M operations formatted as x i j(x = 0 or
1) , x=1 means change the color of stones in range[i,j], and x=0 means ask the longest period of consecutive black stones in range[i,j]
Output
When x=0 output a number means the longest length of black stones in range [i,j].
Sample Input
4
1 0 1 0
5
0 1 4
1 2 3
0 1 4
1 3 3
0 4 4
Sample Output
1
2
0

分段树依旧是难题,本题能够说是分段树的基本操作,可是由于情况好多,程序好长,所以十分耗时间。

之所以使用线段树,不使用一般的动态规划法,是要把每次查询的时间效率降到 (Lgn)。

分段,每段都要维护8个数据,所以非常繁琐。

做的好累,代码改动了非常多次,终于代码算比較清晰的了。有分段树思想的人应该都不难follow。

Hdu是不同意使用free释放空间的,否则出错,奇怪的OJ。

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
using namespace std; class BlackAndWhite3911
{
int arrSize, tSize;
int *arr;
struct Node
{
int le0, le1, ri0, ri1;
int len0, len1;
int totalLen;
bool lazy;
}; Node *SegTree;
void updateNode(int r, int L, int R)
{
if (SegTree[L].le0 == SegTree[L].totalLen)
SegTree[r].le0 = SegTree[L].le0 + SegTree[R].le0;
else SegTree[r].le0 = SegTree[L].le0; if (SegTree[R].ri0 == SegTree[R].totalLen)
SegTree[r].ri0 = SegTree[L].ri0 + SegTree[R].ri0;
else SegTree[r].ri0 = SegTree[R].ri0; if (SegTree[L].le1 == SegTree[L].totalLen)
SegTree[r].le1 = SegTree[L].le1 + SegTree[R].le1;
else SegTree[r].le1 = SegTree[L].le1; if (SegTree[R].ri1 == SegTree[R].totalLen)
SegTree[r].ri1 = SegTree[L].ri1 + SegTree[R].ri1;
else SegTree[r].ri1 = SegTree[R].ri1; int a = max(SegTree[L].len0, SegTree[R].len0);
int b = SegTree[L].ri0 + SegTree[R].le0;
SegTree[r].len0 = max(a, b); a = max(SegTree[L].len1, SegTree[R].len1);
b = SegTree[L].ri1 + SegTree[R].le1;
SegTree[r].len1 = max(a, b);
} void conHelper(int low, int up, int r = 0)
{
if (low == up)
{
if (0 == arr[low])
{
SegTree[r].len0 = 1, SegTree[r].len1 = 0;
SegTree[r].le0 = 1, SegTree[r].ri0 = 1;
SegTree[r].le1 = 0, SegTree[r].ri1 = 0;
}
else
{
SegTree[r].len0 = 0, SegTree[r].len1 = 1;
SegTree[r].le0 = 0, SegTree[r].ri0 = 0;
SegTree[r].le1 = 1, SegTree[r].ri1 = 1;
}
SegTree[r].lazy = false;
SegTree[r].totalLen = 1;
return ;
} int mid = low + ((up-low)>>1);
int le = (r<<1) + 1;
int ri = (r<<1) + 2; conHelper(low, mid, le);
conHelper(mid+1, up, ri); SegTree[r].totalLen = up - low + 1;
updateNode(r, le, ri);
SegTree[r].lazy = false;
} void conTree()
{
int h = (int) ceil(log((double)arrSize)/log(2.0)) + 1;
tSize = (int) pow(2.0, h) - 1;
SegTree = (Node *) malloc(sizeof(Node) * tSize);
conHelper(0, arrSize-1);
} void accessNode(int r)
{
SegTree[r].lazy = !SegTree[r].lazy;
swap(SegTree[r].le0, SegTree[r].le1);
swap(SegTree[r].ri0, SegTree[r].ri1);
swap(SegTree[r].len0, SegTree[r].len1);
} void segUpdate(const int low, const int up, int L, int R, int r = 0)
{
if (low == L && R == up)
{
accessNode(r);
return;
} int le = (r<<1) + 1;
int ri = (r<<1) + 2; if (SegTree[r].lazy)
{
SegTree[r].lazy = false;
if (le < tSize) accessNode(le);
if (ri < tSize) accessNode(ri);
} int M = L + ((R-L)>>1); if (up <= M) segUpdate(low, up, L, M, le);
else if (low > M) segUpdate(low, up, M+1, R, ri);
else
{
segUpdate(low, M, L, M, le);
segUpdate(M+1, up, M+1, R, ri);
}
updateNode(r, le, ri);
} int getLongest(const int low, const int up, int L, int R, int r = 0)
{
if (low == L && R == up)//不能low <= L && R <= up
{
return SegTree[r].len1;
} int le = (r<<1) + 1;
int ri = (r<<1) + 2;
if (SegTree[r].lazy)
{
SegTree[r].lazy = false;
if (le < tSize) accessNode(le);
if (ri < tSize) accessNode(ri);
} int M = L + ((R-L)>>1); //在任一边子树
if (up <= M) return getLongest(low, up, L, M, le);
if (low > M) return getLongest(low, up, M+1, R, ri); //跨左右子树的情况
int llen = getLongest(low, M, L, M, le);//(low, up, L, M, le);
int rlen = getLongest(M+1, up, M+1, R, ri);//(low, up, M+1, R, ri); int a = min(M-low+1, SegTree[le].ri1);
int b = min(up-M, SegTree[ri].le1);
int c = a + b; return max(c, max(llen, rlen));
}
public:
BlackAndWhite3911()
{
int N;
while ( (scanf("%d", &N) != EOF))
{
arrSize = N;
arr = (int *)malloc(sizeof(int) * arrSize); for (int i = 0; i < N; i++)
{
scanf("%d", &arr[i]);
} conTree(); int T;
scanf("%d", &T);
int a, b, c;
while (T--)
{
scanf("%d %d %d", &a, &b, &c);
if (0 == a)
printf("%d\n",getLongest(b-1, c-1, 0, arrSize-1));
else segUpdate(b-1, c-1, 0, arrSize-1);
}
}
} ~BlackAndWhite3911()
{
if (arr) free(arr);
if (SegTree) free(SegTree);
}
};