使用matplotlib.tri.CubicTriInterpolator.演示变化率计算:
完整实例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
from matplotlib.tri import (
Triangulation, UniformTriRefiner, CubicTriInterpolator)
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
#-----------------------------------------------------------------------------
# Electrical potential of a dipole
#-----------------------------------------------------------------------------
def dipole_potential(x, y):
""" The electric dipole potential V """
r_sq = x * * 2 + y * * 2
theta = np.arctan2(y, x)
z = np.cos(theta) / r_sq
return (np. max (z) - z) / (np. max (z) - np. min (z))
#-----------------------------------------------------------------------------
# Creating a Triangulation
#-----------------------------------------------------------------------------
# First create the x and y coordinates of the points.
n_angles = 30
n_radii = 10
min_radius = 0.2
radii = np.linspace(min_radius, 0.95 , n_radii)
angles = np.linspace( 0 , 2 * np.pi, n_angles, endpoint = False )
angles = np.repeat(angles[..., np.newaxis], n_radii, axis = 1 )
angles[:, 1 :: 2 ] + = np.pi / n_angles
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
V = dipole_potential(x, y)
# Create the Triangulation; no triangles specified so Delaunay triangulation
# created.
triang = Triangulation(x, y)
# Mask off unwanted triangles.
triang.set_mask(np.hypot(x[triang.triangles].mean(axis = 1 ),
y[triang.triangles].mean(axis = 1 ))
< min_radius)
#-----------------------------------------------------------------------------
# Refine data - interpolates the electrical potential V
#-----------------------------------------------------------------------------
refiner = UniformTriRefiner(triang)
tri_refi, z_test_refi = refiner.refine_field(V, subdiv = 3 )
#-----------------------------------------------------------------------------
# Computes the electrical field (Ex, Ey) as gradient of electrical potential
#-----------------------------------------------------------------------------
tci = CubicTriInterpolator(triang, - V)
# Gradient requested here at the mesh nodes but could be anywhere else:
(Ex, Ey) = tci.gradient(triang.x, triang.y)
E_norm = np.sqrt(Ex * * 2 + Ey * * 2 )
#-----------------------------------------------------------------------------
# Plot the triangulation, the potential iso-contours and the vector field
#-----------------------------------------------------------------------------
fig, ax = plt.subplots()
ax.set_aspect( 'equal' )
# Enforce the margins, and enlarge them to give room for the vectors.
ax.use_sticky_edges = False
ax.margins( 0.07 )
ax.triplot(triang, color = '0.8' )
levels = np.arange( 0. , 1. , 0.01 )
cmap = cm.get_cmap(name = 'hot' , lut = None )
ax.tricontour(tri_refi, z_test_refi, levels = levels, cmap = cmap,
linewidths = [ 2.0 , 1.0 , 1.0 , 1.0 ])
# Plots direction of the electrical vector field
ax.quiver(triang.x, triang.y, Ex / E_norm, Ey / E_norm,
units = 'xy' , scale = 10. , zorder = 3 , color = 'blue' ,
width = 0.007 , headwidth = 3. , headlength = 4. )
ax.set_title( 'Gradient plot: an electrical dipole' )
plt.show()
|
总结
以上就是本文关于python+matplotlib演示电偶极子实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
原文链接:https://matplotlib.org/index.html