演示结果:
完整代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.image import BboxImage
from matplotlib._png import read_png
import matplotlib.colors
from matplotlib.cbook import get_sample_data
class RibbonBox( object ):
original_image = read_png(get_sample_data( "Minduka_Present_Blue_Pack.png" ,
asfileobj = False ))
cut_location = 70
b_and_h = original_image[:, :, 2 ]
color = original_image[:, :, 2 ] - original_image[:, :, 0 ]
alpha = original_image[:, :, 3 ]
nx = original_image.shape[ 1 ]
def __init__( self , color):
rgb = matplotlib.colors.to_rgba(color)[: 3 ]
im = np.empty( self .original_image.shape,
self .original_image.dtype)
im[:, :, : 3 ] = self .b_and_h[:, :, np.newaxis]
im[:, :, : 3 ] - = self .color[:, :, np.newaxis] * ( 1. - np.array(rgb))
im[:, :, 3 ] = self .alpha
self .im = im
def get_stretched_image( self , stretch_factor):
stretch_factor = max (stretch_factor, 1 )
ny, nx, nch = self .im.shape
ny2 = int (ny * stretch_factor)
stretched_image = np.empty((ny2, nx, nch),
self .im.dtype)
cut = self .im[ self .cut_location, :, :]
stretched_image[:, :, :] = cut
stretched_image[: self .cut_location, :, :] = \
self .im[: self .cut_location, :, :]
stretched_image[ - (ny - self .cut_location):, :, :] = \
self .im[ - (ny - self .cut_location):, :, :]
self ._cached_im = stretched_image
return stretched_image
class RibbonBoxImage(BboxImage):
zorder = 1
def __init__( self , bbox, color,
cmap = None ,
norm = None ,
interpolation = None ,
origin = None ,
filternorm = 1 ,
filterrad = 4.0 ,
resample = False ,
* * kwargs
):
BboxImage.__init__( self , bbox,
cmap = cmap,
norm = norm,
interpolation = interpolation,
origin = origin,
filternorm = filternorm,
filterrad = filterrad,
resample = resample,
* * kwargs
)
self ._ribbonbox = RibbonBox(color)
self ._cached_ny = None
def draw( self , renderer, * args, * * kwargs):
bbox = self .get_window_extent(renderer)
stretch_factor = bbox.height / bbox.width
ny = int (stretch_factor * self ._ribbonbox.nx)
if self ._cached_ny ! = ny:
arr = self ._ribbonbox.get_stretched_image(stretch_factor)
self .set_array(arr)
self ._cached_ny = ny
BboxImage.draw( self , renderer, * args, * * kwargs)
if 1 :
from matplotlib.transforms import Bbox, TransformedBbox
from matplotlib.ticker import ScalarFormatter
# Fixing random state for reproducibility
np.random.seed( 19680801 )
fig, ax = plt.subplots()
years = np.arange( 2004 , 2009 )
box_colors = [( 0.8 , 0.2 , 0.2 ),
( 0.2 , 0.8 , 0.2 ),
( 0.2 , 0.2 , 0.8 ),
( 0.7 , 0.5 , 0.8 ),
( 0.3 , 0.8 , 0.7 ),
]
heights = np.random.random(years.shape) * 7000 + 3000
fmt = ScalarFormatter(useOffset = False )
ax.xaxis.set_major_formatter(fmt)
for year, h, bc in zip (years, heights, box_colors):
bbox0 = Bbox.from_extents(year - 0.4 , 0. , year + 0.4 , h)
bbox = TransformedBbox(bbox0, ax.transData)
rb_patch = RibbonBoxImage(bbox, bc, interpolation = "bicubic" )
ax.add_artist(rb_patch)
ax.annotate(r "%d" % ( int (h / 100. ) * 100 ),
(year, h), va = "bottom" , ha = "center" )
patch_gradient = BboxImage(ax.bbox,
interpolation = "bicubic" ,
zorder = 0.1 ,
)
gradient = np.zeros(( 2 , 2 , 4 ), dtype = float )
gradient[:, :, : 3 ] = [ 1 , 1 , 0. ]
gradient[:, :, 3 ] = [[ 0.1 , 0.3 ], [ 0.3 , 0.5 ]] # alpha channel
patch_gradient.set_array(gradient)
ax.add_artist(patch_gradient)
ax.set_xlim(years[ 0 ] - 0.5 , years[ - 1 ] + 0.5 )
ax.set_ylim( 0 , 10000 )
fig.savefig( 'ribbon_box.png' )
plt.show()
|
总结
以上就是本文关于python+matplotlib实现礼盒柱状图实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
原文链接:https://matplotlib.org/index.html