决策树通常在机器学习中用于分类。
优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配问题。
适用数据类型:数值型和标称型。
1.信息增益
划分数据集的目的是:将无序的数据变得更加有序。组织杂乱无章数据的一种方法就是使用信息论度量信息。通常采用信息增益,信息增益是指数据划分前后信息熵的减少值。信息越无序信息熵越大,获得信息增益最高的特征就是最好的选择。
熵定义为信息的期望,符号xi的信息定义为:
其中p(xi)为该分类的概率。
熵,即信息的期望值为:
计算信息熵的代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
|
def calcShannonEnt(dataSet):
numEntries = len (dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[ - 1 ]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] + = 1
shannonEnt = 0
for key in labelCounts:
shannonEnt = shannonEnt - (labelCounts[key] / numEntries) * math.log2(labelCounts[key] / numEntries)
return shannonEnt
|
可以根据信息熵,按照获取最大信息增益的方法划分数据集。
2.划分数据集
划分数据集就是将所有符合要求的元素抽出来。
1
2
3
4
5
6
7
8
|
def splitDataSet(dataSet,axis,value):
retDataset = []
for featVec in dataSet:
if featVec[axis] = = value:
newVec = featVec[:axis]
newVec.extend(featVec[axis + 1 :])
retDataset.append(newVec)
return retDataset
|
3.选择最好的数据集划分方式
信息增益是熵的减少或者是信息无序度的减少。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
def chooseBestFeatureToSplit(dataSet):
numFeatures = len (dataSet[ 0 ]) - 1
bestInfoGain = 0
bestFeature = - 1
baseEntropy = calcShannonEnt(dataSet)
for i in range (numFeatures):
allValue = [example[i] for example in dataSet] #列表推倒,创建新的列表
allValue = set (allValue) #最快得到列表中唯一元素值的方法
newEntropy = 0
for value in allValue:
splitset = splitDataSet(dataSet,i,value)
newEntropy = newEntropy + len (splitset) / len (dataSet) * calcShannonEnt(splitset)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
|
4.递归创建决策树
结束条件为:程序遍历完所有划分数据集的属性,或每个分支下的所有实例都具有相同的分类。
当数据集已经处理了所有属性,但是类标签还不唯一时,采用多数表决的方式决定叶子节点的类型。
1
2
3
4
5
6
7
|
def majorityCnt(classList):
classCount = {}
for value in classList:
if value not in classCount: classCount[value] = 0
classCount[value] + = 1
classCount = sorted (classCount.items(),key = operator.itemgetter( 1 ),reverse = True )
return classCount[ 0 ][ 0 ]
|
生成决策树:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
def createTree(dataSet,labels):
classList = [example[ - 1 ] for example in dataSet]
labelsCopy = labels[:]
if classList.count(classList[ 0 ]) = = len (classList):
return classList[ 0 ]
if len (dataSet[ 0 ]) = = 1 :
return majorityCnt(classList)
bestFeature = chooseBestFeatureToSplit(dataSet)
bestLabel = labelsCopy[bestFeature]
myTree = {bestLabel:{}}
featureValues = [example[bestFeature] for example in dataSet]
featureValues = set (featureValues)
del (labelsCopy[bestFeature])
for value in featureValues:
subLabels = labelsCopy[:]
myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
return myTree
|
5.测试算法——使用决策树分类
同样采用递归的方式得到分类结果。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
def classify(inputTree,featLabels,testVec):
currentFeat = list (inputTree.keys())[ 0 ]
secondTree = inputTree[currentFeat]
try :
featureIndex = featLabels.index(currentFeat)
except ValueError as err:
print ( 'yes' )
try :
for value in secondTree.keys():
if value = = testVec[featureIndex]:
if type (secondTree[value]).__name__ = = 'dict' :
classLabel = classify(secondTree[value],featLabels,testVec)
else :
classLabel = secondTree[value]
return classLabel
except AttributeError:
print (secondTree)
|
6.完整代码如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
import numpy as np
import math
import operator
def createDataSet():
dataSet = [[ 1 , 1 , 'yes' ],
[ 1 , 1 , 'yes' ],
[ 1 , 0 , 'no' ],
[ 0 , 1 , 'no' ],
[ 0 , 1 , 'no' ],]
label = [ 'no surfacing' , 'flippers' ]
return dataSet,label
def calcShannonEnt(dataSet):
numEntries = len (dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[ - 1 ]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] + = 1
shannonEnt = 0
for key in labelCounts:
shannonEnt = shannonEnt - (labelCounts[key] / numEntries) * math.log2(labelCounts[key] / numEntries)
return shannonEnt
def splitDataSet(dataSet,axis,value):
retDataset = []
for featVec in dataSet:
if featVec[axis] = = value:
newVec = featVec[:axis]
newVec.extend(featVec[axis + 1 :])
retDataset.append(newVec)
return retDataset
def chooseBestFeatureToSplit(dataSet):
numFeatures = len (dataSet[ 0 ]) - 1
bestInfoGain = 0
bestFeature = - 1
baseEntropy = calcShannonEnt(dataSet)
for i in range (numFeatures):
allValue = [example[i] for example in dataSet]
allValue = set (allValue)
newEntropy = 0
for value in allValue:
splitset = splitDataSet(dataSet,i,value)
newEntropy = newEntropy + len (splitset) / len (dataSet) * calcShannonEnt(splitset)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
def majorityCnt(classList):
classCount = {}
for value in classList:
if value not in classCount: classCount[value] = 0
classCount[value] + = 1
classCount = sorted (classCount.items(),key = operator.itemgetter( 1 ),reverse = True )
return classCount[ 0 ][ 0 ]
def createTree(dataSet,labels):
classList = [example[ - 1 ] for example in dataSet]
labelsCopy = labels[:]
if classList.count(classList[ 0 ]) = = len (classList):
return classList[ 0 ]
if len (dataSet[ 0 ]) = = 1 :
return majorityCnt(classList)
bestFeature = chooseBestFeatureToSplit(dataSet)
bestLabel = labelsCopy[bestFeature]
myTree = {bestLabel:{}}
featureValues = [example[bestFeature] for example in dataSet]
featureValues = set (featureValues)
del (labelsCopy[bestFeature])
for value in featureValues:
subLabels = labelsCopy[:]
myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
return myTree
def classify(inputTree,featLabels,testVec):
currentFeat = list (inputTree.keys())[ 0 ]
secondTree = inputTree[currentFeat]
try :
featureIndex = featLabels.index(currentFeat)
except ValueError as err:
print ( 'yes' )
try :
for value in secondTree.keys():
if value = = testVec[featureIndex]:
if type (secondTree[value]).__name__ = = 'dict' :
classLabel = classify(secondTree[value],featLabels,testVec)
else :
classLabel = secondTree[value]
return classLabel
except AttributeError:
print (secondTree)
if __name__ = = "__main__" :
dataset,label = createDataSet()
myTree = createTree(dataset,label)
a = [ 1 , 1 ]
print (classify(myTree,label,a))
|
7.编程技巧
extend与append的区别
1
2
|
newVec.extend(featVec[axis + 1 :])
retDataset.append(newVec)
|
extend([]),是将列表中的每个元素依次加入新列表中
append()是将括号中的内容当做一项加入到新列表中
列表推到
创建新列表的方式
1
|
allValue = [example[i] for example in dataSet]
|
提取列表中唯一的元素
1
|
allValue = set (allValue)
|
列表/元组排序,sorted()函数
1
|
classCount = sorted (classCount.items(),key = operator.itemgetter( 1 ),reverse = True )
|
列表的复制
1
|
labelsCopy = labels[:]
|
代码及数据集下载:决策树
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/weixin_37895339/article/details/78388545