运用TensorFlow进行简单实现线性回归、梯度下降示例

时间:2022-10-10 14:34:38

线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个线性函数,然后测试这个函数训练的好不好(即此函数是否足够拟合训练集数据),挑选出最好的函数(cost function最小)即可。

单变量线性回归:

a) 因为是线性回归,所以学习到的函数为线性函数,即直线函数;

b) 因为是单变量,因此只有一个x。

我们能够给出单变量线性回归的模型:

运用TensorFlow进行简单实现线性回归、梯度下降示例

我们常称x为feature,h(x)为hypothesis。

上面介绍的方法中,我们肯定有一个疑问,怎样能够看出线性函数拟合的好不好呢?

所以此处,我们需要使用到cost function(代价函数),代价函数越小,说明线性回归也越好(和训练集合拟合的越好),当然最小就是0,即完全拟合。

举个实际的例子:

我们想要根据房子的大小,预测房子的价格,给定如下数据集:

运用TensorFlow进行简单实现线性回归、梯度下降示例

根据上面的数据集,画出如下所示的图:

运用TensorFlow进行简单实现线性回归、梯度下降示例

我们需要根据这些点拟合出一条直线,使得cost function最小。虽然现在我们还不知道cost function内部到底是什么样的,但是我们的目标是:给定输入向量x,输出向量y,theta向量,输出cost值。

cost function:

cost function的用途:对假设的函数进行评价,cost function越小的函数,说明对训练数据拟合的越好。

下图详细说明了当cost function为黑盒的时候,cost function的作用:

运用TensorFlow进行简单实现线性回归、梯度下降示例

但是我们肯定想知道cost function的内部结构是什么?因此我们给出下面的公式:

运用TensorFlow进行简单实现线性回归、梯度下降示例

其中:

运用TensorFlow进行简单实现线性回归、梯度下降示例表示向量x中的第i个元素;

运用TensorFlow进行简单实现线性回归、梯度下降示例表示向量y中的第i个元素;

运用TensorFlow进行简单实现线性回归、梯度下降示例表示已知的假设函数;m表示训练集的数量。

运用TensorFlow进行简单实现线性回归、梯度下降示例

如果theta0一直为0,则theta1与j的函数为:

运用TensorFlow进行简单实现线性回归、梯度下降示例

如果theta0和theta1都不固定,则theta0、theta1、j的函数为:

运用TensorFlow进行简单实现线性回归、梯度下降示例

当然我们也能够用二维的图来表示,即等高线图:

运用TensorFlow进行简单实现线性回归、梯度下降示例

注意如果是线性回归,则cost function一定是碗状的,即只有一个最小点。

gradient descent(梯度下降):

但是又一个问题引出来了,虽然给定一个函数,我们能够根据cost function知道这个函数拟合的好不好,但是毕竟函数有这么多,总不能一个一个试吧?

于是我们引出了梯度下降:能够找出cost function函数的最小值。(当然解决问题的方法有很多,梯度下降只是其中一个,还有一种方法叫normal equation)。

梯度下降的原理:将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快。

方法:

a) 先确定向下一步的步伐大小,我们称为learning rate;

b) 任意给定一个初始值:运用TensorFlow进行简单实现线性回归、梯度下降示例运用TensorFlow进行简单实现线性回归、梯度下降示例

c) 确定一个向下的方向,并向下走预定的步伐,并更新运用TensorFlow进行简单实现线性回归、梯度下降示例运用TensorFlow进行简单实现线性回归、梯度下降示例

d) 当下降的高度小于某个定义的值,则停止下降。

算法:

运用TensorFlow进行简单实现线性回归、梯度下降示例

特点:

a)初始点不同,获得的最小值也不同,因此梯度下降求得的只是局部最小值;

b)越接近最小值,下降速度越慢。

问题1:如果运用TensorFlow进行简单实现线性回归、梯度下降示例运用TensorFlow进行简单实现线性回归、梯度下降示例初始值就在local minimum的位置,则运用TensorFlow进行简单实现线性回归、梯度下降示例运用TensorFlow进行简单实现线性回归、梯度下降示例会如何变化?

答案:因为运用TensorFlow进行简单实现线性回归、梯度下降示例运用TensorFlow进行简单实现线性回归、梯度下降示例已经在local minimum位置,所以derivative肯定是0,因此运用TensorFlow进行简单实现线性回归、梯度下降示例运用TensorFlow进行简单实现线性回归、梯度下降示例不会改变。

问题2:如果取到一个正确的运用TensorFlow进行简单实现线性回归、梯度下降示例值,则cost function应该会越来越小。那么,怎么取运用TensorFlow进行简单实现线性回归、梯度下降示例值?

答案:随时观察运用TensorFlow进行简单实现线性回归、梯度下降示例值,如果cost function变小了,则ok;反之,则再取一个更小的值。

下图就详细说明了梯度下降的过程:

运用TensorFlow进行简单实现线性回归、梯度下降示例

从上图中可以看出:初始点不同,获得的最小值也不同,因此,梯度下降求得的只是局部最小值。

注意:下降的步伐大小非常重要,因为,如果太小,则找到函数最小值的速度就很慢;如果太大,则可能会出现overshoot the minimum现象。

下图就是overshoot现象:

运用TensorFlow进行简单实现线性回归、梯度下降示例

如果learning rate取值后发现j function增长了,则需要减小learning rate的值。

integrating with gradient descent & linear regression:

梯度下降能够求出一个函数的最小值。

线性回归需要求得最小的cost function。

因此我们能够对cost function运用梯度下降,即将梯度下降和线性回归进行整合,如下图所示:

运用TensorFlow进行简单实现线性回归、梯度下降示例

梯度下降是通过不停的迭代,而我们比较关注迭代的次数,因为这关系到梯度下降的执行速度,为了减少迭代次数,因此引入了feature scaling。

feature scaling:

此种方法应用于梯度下降,为了加快梯度下降的执行速度。

思想:将各个feature的值标准化,使得取值范围大致都在-1<=x<=1之间。

常用的方法是mean normalization,即运用TensorFlow进行简单实现线性回归、梯度下降示例,或者[x-mean(x)]/std(x)。

运用TensorFlow进行简单实现线性回归、梯度下降示例

练习题

我们想要通过期中考试成绩预测期末考试成绩,我们希望得到的方程为:

运用TensorFlow进行简单实现线性回归、梯度下降示例

给定以下训练集:

运用TensorFlow进行简单实现线性回归、梯度下降示例

我们想对(midterm exam)^2进行feature scaling,则运用TensorFlow进行简单实现线性回归、梯度下降示例经过feature scaling后的值为多少?

解答:其中max = 8836,min = 4761,mean = 6675.5,则运用TensorFlow进行简单实现线性回归、梯度下降示例 = (4761 - 6675.5)/(8836 - 4761) = -0.47 。

多变量线性回归

前面我们只介绍了单变量的线性回归,即只有一个输入变量,现实世界可不只是这么简单,因此此处我们要介绍多变量的线性回归。

举个例子:房价其实受很多因素决定,比如size、number of bedrooms、number of floors、age of home等,这里我们假设房价由4个因素决定,如下图所示:

运用TensorFlow进行简单实现线性回归、梯度下降示例

我们前面定义过单变量线性回归的模型:

运用TensorFlow进行简单实现线性回归、梯度下降示例

这里我们可以定义出多变量线性回归的模型:

运用TensorFlow进行简单实现线性回归、梯度下降示例

cost function如下:

运用TensorFlow进行简单实现线性回归、梯度下降示例

如果下面我们要用梯度下降解决多变量的线性回归,则我们还是可以用传统的梯度下降算法进行计算:

运用TensorFlow进行简单实现线性回归、梯度下降示例

总练习题

我们想要根据一个学生第一年的成绩预测第二年的成绩,x为第一年得到a的数量,y为第二年得到a的数量,给定以下数据集:

运用TensorFlow进行简单实现线性回归、梯度下降示例

(1) 训练集的个数?

答:4个。

(2) j(0, 1)的结果是多少?

解:j(0,1) = 1/(2*4)*[(3-4)^2+(2-1)^2+(4-3)^2+(0-1)^2] = 1/8*(1+1+1+1) = 1/2 = 0.5。

我们也可以通过vectorization的方法快速算出j(0, 1):

运用TensorFlow进行简单实现线性回归、梯度下降示例

下面是通过tensorflow进行简单的实现:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/env python
 
from __future__ import print_function
 
import tensorflow as tf
import numpy as np
 
trx = np.linspace(-1, 1, 101)
# create a y value which is approximately linear but with some random noise
try = 2 * trx + \
  np.ones(*trx.shape) * 4 + \
  np.random.randn(*trx.shape) * 0.03
 
x = tf.placeholder(tf.float32) # create symbolic variables
y = tf.placeholder(tf.float32)
 
def model(x, w, b):
  # linear regression is just x*w + b, so this model line is pretty simple
  return tf.mul(x, w) +
 
# create a shared for weight s
w = tf.variable(0.0, name="weights")
# create a variable for biases
b = tf.variable(0.0, name="biases")
y_model = model(x, w, b)
 
cost = tf.square(y - y_model) # use square error for cost function
 
# construct an optimizer to minimize cost and fit line to mydata
train_op = tf.train.gradientdescentoptimizer(0.01).minimize(cost)
 
# launch the graph in a session
with tf.session() as sess:
  # you need to initialize variables (in this case just variable w)
  init = tf.initialize_all_variables()
  sess.run(init)
 
  # train
  for i in range(100):
    for (x, y) in zip(trx, try):
      sess.run(train_op, feed_dict={x: x, y: y})
 
  # print weight
  print(sess.run(w)) # it should be something around 2
  # print bias
  print(sess.run(b)) # it should be something atound 4

参考:

tensorflow线性回归demo

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:http://blog.csdn.net/universe_ant/article/details/52743097