本文实例讲述了Python使用matplotlib绘制动画的方法。分享给大家供大家参考。具体分析如下:
matplotlib从1.1.0版本以后就开始支持绘制动画
下面是几个的示例:
第一个例子使用generator,每隔两秒,就运行函数data_gen:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
fig = plt.figure()
axes1 = fig.add_subplot( 111 )
line, = axes1.plot(np.random.rand( 10 ))
#因为update的参数是调用函数data_gen,
#所以第一个默认参数不能是framenum
def update(data):
line.set_ydata(data)
return line,
# 每次生成10个随机数据
def data_gen():
while True :
yield np.random.rand( 10 )
ani = animation.FuncAnimation(fig, update, data_gen, interval = 2 * 1000 )
plt.show()
|
第二个例子使用list(metric),每次从metric中取一行数据作为参数送入update中:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
start = [ 1 , 0.18 , 0.63 , 0.29 , 0.03 , 0.24 , 0.86 , 0.07 , 0.58 , 0 ]
metric = [[ 0.03 , 0.86 , 0.65 , 0.34 , 0.34 , 0.02 , 0.22 , 0.74 , 0.66 , 0.65 ],
[ 0.43 , 0.18 , 0.63 , 0.29 , 0.03 , 0.24 , 0.86 , 0.07 , 0.58 , 0.55 ],
[ 0.66 , 0.75 , 0.01 , 0.94 , 0.72 , 0.77 , 0.20 , 0.66 , 0.81 , 0.52 ]
]
fig = plt.figure()
window = fig.add_subplot( 111 )
line, = window.plot(start)
#如果是参数是list,则默认每次取list中的一个元素,
#即metric[0],metric[1],...
def update(data):
line.set_ydata(data)
return line,
ani = animation.FuncAnimation(fig, update, metric, interval = 2 * 1000 )
plt.show()
|
第三个例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
# First set up the figure, the axis, and the plot element we want to animate
fig = plt.figure()
ax = plt.axes(xlim = ( 0 , 2 ), ylim = ( - 2 , 2 ))
line, = ax.plot([], [], lw = 2 )
# initialization function: plot the background of each frame
def init():
line.set_data([], [])
return line,
# animation function. This is called sequentially
# note: i is framenumber
def animate(i):
x = np.linspace( 0 , 2 , 1000 )
y = np.sin( 2 * np.pi * (x - 0.01 * i))
line.set_data(x, y)
return line,
# call the animator. blit=True means only re-draw the parts that have changed.
anim = animation.FuncAnimation(fig, animate, init_func = init,
frames = 200 , interval = 20 , blit = True )
#anim.save('basic_animation.mp4', fps=30, extra_args=['-vcodec', 'libx264'])
plt.show()
|
第四个例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
# 每次产生一个新的坐标点
def data_gen():
t = data_gen.t
cnt = 0
while cnt < 1000 :
cnt + = 1
t + = 0.05
yield t, np.sin( 2 * np.pi * t) * np.exp( - t / 10. )
data_gen.t = 0
# 绘图
fig, ax = plt.subplots()
line, = ax.plot([], [], lw = 2 )
ax.set_ylim( - 1.1 , 1.1 )
ax.set_xlim( 0 , 5 )
ax.grid()
xdata, ydata = [], []
# 因为run的参数是调用函数data_gen,
# 所以第一个参数可以不是framenum:设置line的数据,返回line
def run(data):
# update the data
t,y = data
xdata.append(t)
ydata.append(y)
xmin, xmax = ax.get_xlim()
if t > = xmax:
ax.set_xlim(xmin, 2 * xmax)
ax.figure.canvas.draw()
line.set_data(xdata, ydata)
return line,
# 每隔10秒调用函数run,run的参数为函数data_gen,
# 表示图形只更新需要绘制的元素
ani = animation.FuncAnimation(fig, run, data_gen, blit = True , interval = 10 ,
repeat = False )
plt.show()
|
再看下面的例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
#第一个参数必须为framenum
def update_line(num, data, line):
line.set_data(data[...,:num])
return line,
fig1 = plt.figure()
data = np.random.rand( 2 , 15 )
l, = plt.plot([], [], 'r-' )
plt.xlim( 0 , 1 )
plt.ylim( 0 , 1 )
plt.xlabel( 'x' )
plt.title( 'test' )
#framenum从1增加大25后,返回再次从1增加到25,再返回...
line_ani = animation.FuncAnimation(fig1, update_line, 25 ,fargs = (data, l),interval = 50 , blit = True )
#等同于
#line_ani = animation.FuncAnimation(fig1, update_line, frames=25,fargs=(data, l),
# interval=50, blit=True)
#忽略frames参数,framenum会从1一直增加下去知道无穷
#由于frame达到25以后,数据不再改变,所以你会发现到达25以后图形不再变化了
#line_ani = animation.FuncAnimation(fig1, update_line, fargs=(data, l),
# interval=50, blit=True)
plt.show()
|
希望本文所述对大家的python程序设计有所帮助。