Matching Networks for One Shot Learning

时间:2022-10-08 12:20:40

1. Introduction


In this work, inspired by metric learning based on deep neural features and memory augment neural networks, authors propose matching networks that map a small labelled support set and an unlabelled example to its label. Then they define one-shot learning problems on vision and language tasks and obtain an improving one-shot accuracy on ImageNet and Omnight. The novelty of their work is twofold: at the modeling level, and at the training procedure.

2. Model


Their non-parametric approach to solving one-shot is based on two components. First, the model architecture follows recent advances in neural networks augmented with memory. Given a support set $S$, the model difines a function $c_S$(or classifier) for each $S$ Sencond, we employ a training strategy which is tailored for one-shot learning from the support set $S$

Matching Networks for One Shot Learning

2.1 Model Architecture

Matching Networks are able to produce sensible test labels for unobserved classes without any changes to the network. We wish to map from a support set of $k$ examples of images-label pairs $S={(x_i,y_i)}_{i=1}^k$ to a classfier $c_S(\hat{x})$ which,given a test example $\hat{x}$, defines a probability distribution over outputs $\hat{y}$. Furthmore, difine the mapping $S\rightarrow c_S(\hat{x})$ to be $P(\hat{y} \mid \hat{x},S)$ where $P$ is parameterised by a neural network. Thus, When given a new support set of examples $S'$ from which to one-shot learn, we simply use the parametric neural network defined by $P$ to make predictions about the appropriate label $\hat{y}$ for each test example $\hat{x}$: $P(\hat{y} \mid \hat{x},S')$. In general, our predicted output class for a given input unseen example $\hat{x}$ and a support set $S$ becomes $arg \max_y P(y\mid \hat{x},S)$. The model in its simplest form computes $\hat{y}$ as follows:

$$ \hat{y}=\sum_{i=1}^k a(\hat{x},x_i)y_i $$

where $x_i,y_i$ are the samples and labels from the support set $S=\{(x_i,y_i)\}_{i=1}^k$, and $a$ is an attention mechanism. Here,the attention kernel function is the softmax over the cosine distance. $$ a(\hat{x},x_i)=\frac{e^{c(f(\hat{x}),g(x_i))}}{\sum_{j=1}^k e^{c(f(\hat{x}),g(x_j))}} $$ where embeding functions $f$ and $g$ are, actually, appropriate neural networks to embed $\hat{x}$ and $x_i$

2.2 Training Strategy

Let us define a tast $T$ as distribution over possible label sets $L$. To form an “episode” to compute gradients and update our model, we first sample $L$ from $T$(e.g.,$L$ could be the label set {cats; dogs}). We then use $L$ to sample the support set $S$ and a batch $B$ (i.e., both $S$ and $B$ are labelled examples of cats and dogs). The Matching Net is then trained to minimise the error predicting the labels in the batch B conditioned on the support set $S$. This is a form of meta-learning since the training procedure explicitly learns to learn from a given support set to minimise a loss over a batch. More precisely, the Matching Nets training objective is as follows:

$$ \theta = arg\max_{\theta}E_{L\sim T}\Big[E_{S\sim L,B\sim L}\Big[\sum_{(x,y)\in B}\log P_{\theta}(y\mid x,S)\Big]\Big] $$

Training $\theta$ with this objective function yields a model which works well when sampling $S'\sim T'$ from a different distribution of novel labels

3. Appendix


3.1 The Fully Conditional Embedding $f$

The embedding function for an example $\hat{x}$ in the batch $B$ is as follows:

$$ f(\hat{x},S)=attLSTM(f'(\hat{x}),g(S),K) $$

where $f'$ is a neural network. $K$ is the number of "processing" steps following work. $g(S)$ represents the embedding function $g$ applied to each element $x_i$ from the set $S$. Thus, the state after $k$ processing steps is as follows:

$$ \hat{h}_k,c_k = LSTM(f'(\hat{x}),[h_{k-1},r_{k-1}],c_{k-1}) $$

$$ h_k = \hat{h}_k+f'(\hat{x}) $$

$$ r_{k-1}=\sum_{i=1}^{|S|}a(h_{k-1},g(x_i))g(x_i) $$

$$ a(h_{k-1},g(x_i))=softmax(h_{k-1}^Tg(x_i)) $$

3.2 The Fully Conditional Embedding $g$

The encoding function for the elements in the support set $S$, $g(x_i,S)$ as a bidirectional LSTM. Let g'(x_i) be a neural network, then we difine $g(x_i,S)=\vec{h}_i+h_i^{\leftarrow}+g'(x_i)$ with:

$$ \vec{h}_i,\vec{c}_i=LSTM(g'(x_i),\vec{h}_{i-1},\vec{c}_{i-1}) $$

$$ h_i^{\leftarrow},c_i^{\leftarrow}=LSTM(g'(x_i),h_{i+1}^{\leftarrow},c_{i+1}^{\leftarrow}) $$

Reference: https://arxiv.org/abs/1606.04080

Matching Networks for One Shot Learning的更多相关文章

  1. (转)Paper list of Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning

    Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning 2018-08-03 19:16:56 本文转自:http ...

  2. Multi-attention Network for One Shot Learning

    Multi-attention Network for One Shot Learning 2018-05-15 22:35:50  本文的贡献点在于: 1. 表明类别标签信息对 one shot l ...

  3. (六)6.11 Neurons Networks implements of self-taught learning

    在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...

  4. 论文笔记系列-Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves

    I. 背景介绍 1. 学习曲线(Learning Curve) 我们都知道在手工调试模型的参数的时候,我们并不会每次都等到模型迭代完后再修改超参数,而是待模型训练了一定的epoch次数后,通过观察学习 ...

  5. CS229 6.11 Neurons Networks implements of self-taught learning

    在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...

  6. 零样本学习 - (Zero shot learning,ZSL)

    https://zhuanlan.zhihu.com/p/41846072 https://zhuanlan.zhihu.com/p/38418698 https://zhuanlan.zhihu.c ...

  7. 18 Issues in Current Deep Reinforcement Learning from ZhiHu

    深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两 ...

  8. (zhuan) Where can I start with Deep Learning?

    Where can I start with Deep Learning? By Rotek Song, Deep Reinforcement Learning/Robotics/Computer V ...

  9. Few-Shot/One-Shot Learning

    Few-Shot/One-Shot Learning指的是小样本学习,目的是克服机器学习中训练模型需要海量数据的问题,期望通过少量数据即可获得足够的知识. Matching Networks for ...

随机推荐

  1. 【转】eclipse luna 无法安装veloeclipse问题

    转载地址:https://code.google.com/p/veloeclipse/issues/detail?id=47 I tried to install veloeclipse 2.0.8 ...

  2. word中公式居中、编号居右方法

    1.输入公式和序号如“Z=X+Y(1)”,不需要在二者之间加括号:2.双击横标尺的空白位置,弹出“制表符”对话框,点击“全部清除”:3.观察标尺长度,如图中所示位置(如24):4.输入标尺长度的一半( ...

  3. Spark Tungsten揭秘 Day4 内存和CPU优化使用

    Spark Tungsten揭秘 Day4 内存和CPU优化使用 今天聚焦于内存和CPU的优化使用,这是Spark2.0提供的关于执行时的非常大的优化部分. 对过去的代码研究,我们会发现,抽象的提高, ...

  4. inflate方法与findViewById的区别

    LayoutInflater作用是将layout的xml布局文件实例化为View类对象. 对于一个没有被载入或者想要动态载入的界面,都需要使用LayoutInflater.inflate()来找 re ...

  5. 从零开始学android开发-创建第一个android项目

    打开ADT开发工具

  6. 【C#】Deep copy of objects

    If you learned C++ carefully, you must have known something about the copy of object. For example, I ...

  7. 【kmp】 字符串最大周期

    大侠住店 TimeLimit: 1 Second MemoryLimit: 32 Megabyte Totalsubmit: 116 Accepted: 64 Description 有一天晚上,一位 ...

  8. 前端(各种demo)三:优惠券,热区,等模块的实现(css方式)

    各种样式的css实现 1.优惠券样式的实现: 2.热区的实现:   在电商平台上总会发出各种券,需要对应到不同的产品,对应到不同的服务.而使用券可以使用UED的设计稿里的照片,但是本来一次性的加载过多 ...

  9. 基于 Hexo + GitHub Pages 搭建个人博客(一)

    前言:我的博客写作之路 15 年刚上大学,第一次接触公众号,就萌生了创建一个公众号写点东西,但最终不了了之. 很快到了 16 年,开始接触网上各大博客网站,接触最多的当属 CSDN,萌生了注册一个博客 ...

  10. 【Spring】Spring之向 IOC 容器注入对象的三种方式

    关于Spring的搭建可参见:浅析Spring框架的搭建.在测试之前还是应该先将环境配置好,将相关Jar包导进来.Spring创建的对象,默认情况下都是单例模式,除非通过scope指定. 向IOC容器 ...