本文实例为大家分享了python+opencv实现霍夫变换检测直线的具体代码,供大家参考,具体内容如下
python+opencv实现高斯平滑滤波
python+opencv实现阈值分割
功能:
创建一个滑动条来控制检测直线的长度阈值,即大于该阈值的检测出来,小于该阈值的忽略
注意:这里用的函数是HoughLinesP而不是HoughLines,因为HoughLinesP直接给出了直线的断点,在画出线段的时候可以偷懒
代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
# -*- coding: utf-8 -*-
import cv2
#两个回调函数
def HoughLinesP(minLineLength):
global minLINELENGTH
minLINELENGTH = minLineLength + 1
print "minLINELENGTH:" ,minLineLength + 1
tempIamge = scr.copy()
lines = cv2.HoughLinesP( edges, 1 , cv2.cv.CV_PI / 180 , minLINELENGTH, 0 )
for x1,y1,x2,y2 in lines[ 0 ]:
cv2.line(tempIamge,(x1,y1),(x2,y2),( 0 , 255 , 0 ), 1 )
cv2.imshow(window_name,tempIamge)
#临时变量
minLineLength = 20
#全局变量
minLINELENGTH = 20
max_value = 100
window_name = "HoughLines Demo"
trackbar_value = "minLineLength"
#读入图片,模式为灰度图,创建窗口
scr = cv2.imread( "G:\homework\building.bmp" )
gray = cv2.cvtColor(scr,cv2.COLOR_BGR2GRAY)
img = cv2.GaussianBlur(gray,( 3 , 3 ), 0 )
edges = cv2.Canny(img, 50 , 150 , apertureSize = 3 )
cv2.namedWindow(window_name)
#创建滑动条
cv2.createTrackbar( trackbar_value, window_name,
minLineLength, max_value, HoughLinesP)
#初始化
HoughLinesP( 20 )
if cv2.waitKey( 0 ) = = 27 :
cv2.destroyAllWindows()
|
调用:
1
2
3
4
5
6
7
8
9
10
11
12
|
>>> import os
>>> os.chdir( "g:homework" )
>>>
>>> import HoughLines
minLINELENGTH: 20
minLINELENGTH: 21
minLINELENGTH: 22
minLINELENGTH: 23
minLINELENGTH: 25
minLINELENGTH: 26
minLINELENGTH: 27
minLINELENGTH: 28
|
效果图:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/xieyi4650/article/details/51361675