python+opencv实现霍夫变换检测直线

时间:2022-10-07 19:04:44

本文实例为大家分享了python+opencv实现霍夫变换检测直线的具体代码,供大家参考,具体内容如下

python+opencv实现高斯平滑滤波
python+opencv实现阈值分割

功能:

创建一个滑动条来控制检测直线的长度阈值,即大于该阈值的检测出来,小于该阈值的忽略
注意:这里用的函数是HoughLinesP而不是HoughLines,因为HoughLinesP直接给出了直线的断点,在画出线段的时候可以偷懒

代码:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# -*- coding: utf-8 -*-
 
import cv2
 
#两个回调函数
def HoughLinesP(minLineLength):
 global minLINELENGTH
 minLINELENGTH = minLineLength + 1
 print "minLINELENGTH:",minLineLength + 1
 tempIamge = scr.copy()
 lines = cv2.HoughLinesP( edges, 1, cv2.cv.CV_PI/180, minLINELENGTH, 0 )
 for x1,y1,x2,y2 in lines[0]:
 cv2.line(tempIamge,(x1,y1),(x2,y2),(0,255,0),1)
 cv2.imshow(window_name,tempIamge)
 
#临时变量
minLineLength = 20
 
#全局变量
minLINELENGTH = 20
max_value = 100
window_name = "HoughLines Demo"
trackbar_value = "minLineLength"
 
#读入图片,模式为灰度图,创建窗口
scr = cv2.imread("G:\homework\building.bmp")
gray = cv2.cvtColor(scr,cv2.COLOR_BGR2GRAY)
img = cv2.GaussianBlur(gray,(3,3),0)
edges = cv2.Canny(img, 50, 150, apertureSize = 3)
cv2.namedWindow(window_name)
 
#创建滑动条
cv2.createTrackbar( trackbar_value, window_name,
  minLineLength, max_value, HoughLinesP)
 
#初始化
HoughLinesP(20)
 
if cv2.waitKey(0) == 27:
 cv2.destroyAllWindows()

调用:

?
1
2
3
4
5
6
7
8
9
10
11
12
>>> import os
>>> os.chdir("g:homework")
>>>
>>> import HoughLines
minLINELENGTH: 20
minLINELENGTH: 21
minLINELENGTH: 22
minLINELENGTH: 23
minLINELENGTH: 25
minLINELENGTH: 26
minLINELENGTH: 27
minLINELENGTH: 28

效果图:

python+opencv实现霍夫变换检测直线

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/xieyi4650/article/details/51361675