poj 1113 wall(凸包裸题)(记住求线段距离的时候是点积,点积是cos)

时间:2022-10-07 11:52:48
Wall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 43274   Accepted: 14716

Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 
poj 1113 wall(凸包裸题)(记住求线段距离的时候是点积,点积是cos)
Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements. 

The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle. 

Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628

Hint

结果四舍五入就可以了
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio>
using namespace std; const int MAXN =1010;
const double PI= acos(-1.0);
//精度
double eps=1e-8;
//避免出现-0.00情况,可以在最后加eps
//精度比较
int sgn(double x)
{
if(fabs(x)<=eps)return 0;
if(x<0)return -1;
return 1;
} //点的封装
struct Point
{
double x,y;
Point (){}
//赋值
Point (double _x,double _y)
{
x=_x;
y=_y;
}
//点相减
Point operator -(const Point &b)const
{
return Point (x-b.x,y-b.y);
}
//点积
double operator *(const Point &b)const
{
return x*b.x+y*b.y;
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
} ; //线的封装
struct Line
{
Point s,e;
Line (){}
Line (Point _s,Point _e)
{
s=_s;
e=_e;
}
//平行和重合判断 相交输出交点
//直线相交和重合判断,不是线段,
Point operator &(const Line &b)const{
Point res=b.s;
if(sgn((e-s)^(b.e-b.s))==0)
{
if(sgn((e-s)^(e-b.e))==0)
{
//重合
return Point(0,0);
}
else
{
//平行
return Point(0,0);
}
}
double t=((e-s)^(s-b.s))/((e-s)^(b.e-b.s));
res.x+=(b.e.x-b.s.x)*t;
res.y+=(b.e.y-b.s.y)*t;
return res;
}
}; //向量叉积
double xmult(Point p0,Point p1,Point p2)
{
return (p0-p1)^(p2-p1);
} //线段和线段非严格相交,相交时true
//此处是线段
bool seg_seg(Line l1,Line l2)
{
return sgn(xmult(l1.s,l2.s,l2.e)*xmult(l1.e,l2.s,l2.e))<=0&&sgn(xmult(l2.s,l1.s,l1.e)*xmult(l2.e,l1.s,l1.e))<=0;
} //两点之间的距离
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
} //极角排序;对100个点进行极角排序
int pos;//极点下标
Point p[MAXN];
int Stack[MAXN],top;
bool cmp(Point a,Point b)
{
double tmp=sgn((a-p[pos])^(b-p[pos]));//按照逆时针方向进行排序
if(tmp==0)return dist(a,p[pos])<dist(b,p[pos]);
if(tmp<0)return false ;
return true;
}
void Graham(int n)
{
Point p0;
int k=0;
p0=p[0];
for(int i=1;i<n;i++)//找到最左下边的点
{
if(p0.y>p[i].y||(sgn(p0.y-p[i].y))==0&&p0.x>p[i].x)
{
p0=p[i];
k=i;
}
}
swap(p[k],p[0]);
sort(p+1,p+n,cmp);
if(n==1)
{
top=2;
Stack[0]=0;
return ;
}
if(n==2)
{
top=2;
Stack[0]=0;
Stack[1]=1;
return ;
}
Stack[0]=0;Stack[1]=1;
top=2;
for(int i=2;i<n;i++)
{
while(top>1&&sgn((p[Stack[top-1]]-p[Stack[top-2]])^(p[i]-p[Stack[top-2]]))<=0)
top--;
Stack[top++]=i;
}
} int main ()
{
int n,l;
cin>>n>>l;
for(int i=0;i<n;i++)
cin>>p[i].x>>p[i].y;
Graham(n);
double sum=0;
for(int i=0;i<top-1;i++)
sum+=dist(p[Stack[i]],p[Stack[i+1]]);
sum+=dist(p[Stack[top-1]],p[Stack[0]]);
sum+=PI*2*l;
sum=(sum)*10/10;
printf("%.f\n",sum);
return 0;
}

poj 1113 wall(凸包裸题)(记住求线段距离的时候是点积,点积是cos)的更多相关文章

  1. POJ 1113 Wall 凸包 裸

    LINK 题意:给出一个简单几何,问与其边距离长为L的几何图形的周长. 思路:求一个几何图形的最小外接几何,就是求凸包,距离为L相当于再多增加上一个圆的周长(因为只有四个角).看了黑书使用graham ...

  2. poj 1113 Wall 凸包的应用

    题目链接:poj 1113   单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: #include<iostream&gt ...

  3. POJ 1113 Wall 凸包求周长

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26286   Accepted: 8760 Description ...

  4. POJ 1113 - Wall 凸包

    此题为凸包问题模板题,题目中所给点均为整点,考虑到数据范围问题求norm()时先转换成double了,把norm()那句改成<vector>压栈即可求得凸包. 初次提交被坑得很惨,在GDB ...

  5. POJ 1113 Wall&lpar;思维 计算几何 数学&rpar;

    题意 题目链接 给出平面上n个点的坐标.你需要建一个围墙,把所有的点围在里面,且围墙距所有点的距离不小于l.求围墙的最小长度. \(n \leqslant 10^5\) Sol 首先考虑如果没有l的限 ...

  6. POJ 1087 最大流裸题 &plus; map

    A Plug for UNIX Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15597   Accepted: 5308 ...

  7. poj 1113&colon;Wall(计算几何,求凸包周长)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28462   Accepted: 9498 Description ...

  8. POJ 1113 Wall 求凸包的两种方法

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 31199   Accepted: 10521 Descriptio ...

  9. POJ 1113 Wall 求凸包

    http://poj.org/problem?id=1113 不多说...凸包网上解法很多,这个是用graham的极角排序,也就是算导上的那个解法 其实其他方法随便乱搞都行...我只是测一下模板... ...

随机推荐

  1. subversion&lpar;SVN&rpar;常规使用

    语法: svn <subcommand> [options] [args]      使用“svn help <subcommand>” 显示子命令的帮助信息.      使用 ...

  2. ——YC,你学到了吗?——学到了学到了

    又是周末了,想着开始我的每周一切(每周做一次从切图到静态网页布局的练习)任务吧,无意间看了看别人的页面,发现--我去,这个动画挺有意思的啊,怎么实现的?然后翻代码+搜索,啊,原来是插件啊~给我的也用上 ...

  3. 20145120 《Java程序设计》第10周学习总结

    20145120 <Java程序设计>第10周学习总结 教材学习内容总结 转自:http://www.cnblogs.com/springcsc/archive/2009/12/03/16 ...

  4. tcp&sol;ip体系-转载

    如果还想在测试这条路上继续走下去的话,那么下面这些东西就是我们必须去掌握的,至少你还不想止步于简单的黑盒测试--其实,一直想去接触Linux下的应用测试,这样能学到东西会很多,而且会非常的受用.之前听 ...

  5. JAVA运行程序代码段

    我记得那时候刚毕业.学习JAVA恐惧是这里,它是关于JAVA称号.我总是不正确.如今,这最后审查.看了好半天.得赶紧把刚才学习到的那点东西记下来. 一.关于static的代码段运行顺序 运行结果例如以 ...

  6. Python基础3切片,字符串的方法

    切片:截取字符串某一段字符,并不改变原字符串.结构:[起始位置:终止位置:步长]  但不包括终止位置.所谓:顾头不顾尾 索引:序列中每个元素都是有编号的,都是从0开始编号的.使用负数索引时,Pytho ...

  7. thinkinginjava学习笔记01&lowbar;导论

    初学java,希望旅途愉快  :) 类型决定对象的接口,(有人认为类是类型的特定实现),接口确定对象所能发出的请求(消息),满足请求的代码和隐藏的数据一起构成实现: 对象设计时,应该很好地完成一项任务 ...

  8. asp&period;net core 系列之中间件基础篇&lpar;middleware&rpar;

    中间件是一种插入到管道上进行处理请求和响应的软件:每个中间件组件具有下面的功能: 选择是否把请求传递到管道上的下一个组件 可以在下一个组件的之前和之后做处理工作 请求委托(request delega ...

  9. python第四十八课——类函数和对象函数

    5.类函数和对象函数 类函数:在定义函数的上面一行书写@classmethod,特点:没有self 有cls 对象函数:定义在class中的普通的def函数 演示类函数和对象函数的定义使用: 总结: ...

  10. &commat;property专题

    “属性” (property)作为 Objective-C 的一项特性,主要的作用就在于封装对象中的数据. Objective-C 对象通常会把其所需要的数据保存为各种实例变量.实例变量一般通过“存取 ...