题意:给出一个简单几何,问与其边距离长为L的几何图形的周长。
思路:求一个几何图形的最小外接几何,就是求凸包,距离为L相当于再多增加上一个圆的周长(因为只有四个角)。看了黑书使用graham算法极角序求凸包会有点小问题,最好用水平序比较好。或者用Melkman算法
/** @Date : 2017-07-13 14:17:05
* @FileName: POJ 1113 极角序求凸包 基础凸包.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#include <math.h>
//#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
const double Pi = acos(-1.0);
struct point
{
int x, y;
point(){}
point(int _x, int _y){x = _x, y = _y;}
point operator -(const point &b) const
{
return point(x - b.x, y - b.y);
}
int operator *(const point &b) const
{
return x * b.x + y * b.y;
}
int operator ^(const point &b) const
{
return x * b.y - y * b.x;
}
}; double xmult(point p1, point p2, point p0)
{
return (p1 - p0) ^ (p2 - p0);
} double distc(point a, point b)
{
return sqrt((double)((b - a) * (b - a)));
} int n, l;
point p[N];
stack<int>s; int cmp(point a, point b)//以p[0]基准 极角序排序
{
int t = xmult(a, b, p[0]);
if(t > 0)
return 1;
if(t == 0)
return distc(a, p[0]) < distc(b, p[0]);
if(t < 0)
return 0;
} void graham()
{
while(!s.empty())
s.pop();
for(int i = 0; i < min(n, 2); i++)
s.push(i);
int t = 1;
for(int i = 2; i < n; i++)
{
while(s.size() > 1)
{
int p2 = s.top();
s.pop();
int p1 = s.top();
if(xmult(p[p1], p[p2], p[i]) > 0)
{
s.push(p2);
break;
}
}
s.push(i);
} } int main()
{
while(~scanf("%d%d", &n, &l))
{
int x, y;
int mix, miy;
mix = miy = INF;
int pos = -1;
for(int i = 0; i < n; i++)
{
scanf("%d%d", &x, &y);
p[i] = point(x, y);
if(miy > y || miy == y && mix > x)//注意选第一个点 是最左下方的
{
mix = x, miy = y;
pos = i;
}
}
swap(p[pos], p[0]);
sort(p + 1, p + n, cmp);
graham();
double ans = l * Pi * 2.0000;
int t = 0;
while(!s.empty())
{
ans += distc(p[t], p[s.top()]);
t = s.top();
s.pop();
}
printf("%d\n", (int)(ans + 0.500000));
}
return 0;
}