今天用numpy 的linalg.det()求矩阵的逆的过程中出现了一个错误:
1
|
TypeError: No loop matching the specified signature and casting was found for ufunc det
|
查了半天发现是数据类型的问题,numpy在算逆的时候会先检查一下数据类型是否一致,若不一致就会报错(话说这个错误提示信息也太难理解了,还得看源码o(╯□╰)o)。
由于我的数据是用pandas.DataFrame读取的,所以每一列的数据类型有可能不同。
回头检查一下数据,果然有的是int,有的是float。所以全部改为float64类型。
找到了如下的方法,以及DataFrame数据类型:
DataFrame 类型转换方法—astype()
1
2
3
4
5
6
7
8
9
10
11
12
|
import pandas as pd
df = pd.DataFrame([{ 'col1' : 'a' , 'col2' : '1' }, { 'col1' : 'b' , 'col2' : '2' }])
print df.dtypes
df[ 'col2' ] = df[ 'col2' ].astype( 'int' )
print '-----------'
print df.dtypes
df[ 'col2' ] = df[ 'col2' ].astype( 'float64' )
print '-----------'
print df.dtypes
|
输出:
1
2
3
4
5
6
7
8
9
10
11
|
col1 object
col2 object
dtype: object
- - - - - - - - - - -
col1 object
col2 int32
dtype: object
- - - - - - - - - - -
col1 object
col2 float64
dtype: object
|
astype()也能一次改变所有数据的类型:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
In[ 30 ]:a
Out[ 31 ]:
a b c d
0 0.891380 0.442167 - 0.539450 1.023458
1 - 0.488131 - 1.847104 - 0.209799 - 0.768713
2 1.290434 0.327096 0.358406 0.422209
In[ 32 ]:a.astype( 'int32' )
Out[ 32 ]:
a b c d
0 0 0 0 1
1 0 - 1 0 0
2 1 0 0 0
|
附:data type list
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
Data type Description
bool_ Boolean ( True or False ) stored as a byte
int_ Default integer type (same as C long ; normally either int64 or int32)
intc Identical to C int (normally int32 or int64)
intp Integer used for indexing (same as C ssize_t; normally either int32 or int64)
int8 Byte ( - 128 to 127 )
int16 Integer ( - 32768 to 32767 )
int32 Integer ( - 2147483648 to 2147483647 )
int64 Integer ( - 9223372036854775808 to 9223372036854775807 )
uint8 Unsigned integer ( 0 to 255 )
uint16 Unsigned integer ( 0 to 65535 )
uint32 Unsigned integer ( 0 to 4294967295 )
uint64 Unsigned integer ( 0 to 18446744073709551615 )
float_ Shorthand for float64.
float16 Half precision float : sign bit, 5 bits exponent, 10 bits mantissa
float32 Single precision float : sign bit, 8 bits exponent, 23 bits mantissa
float64 Double precision float : sign bit, 11 bits exponent, 52 bits mantissa
complex_ Shorthand for complex128.
complex64 Complex number, represented by two 32 - bit floats (real and imaginary components)
complex128 Complex number, represented by two 64 - bit floats (real and imaginary components)
|
以上这篇基于DataFrame改变列类型的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/wenshen1927/article/details/76889546