对numpy.append()里的axis的用法详解

时间:2022-10-06 14:33:08

如下所示:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
def append(arr, values, axis=None):
 """
 Append values to the end of an array.
 Parameters
 ----------
 arr : array_like
  Values are appended to a copy of this array.
 values : array_like
  These values are appended to a copy of `arr`. It must be of the
  correct shape (the same shape as `arr`, excluding `axis`). If
  `axis` is not specified, `values` can be any shape and will be
  flattened before use.
 axis : int, optional
  The axis along which `values` are appended. If `axis` is not
  given, both `arr` and `values` are flattened before use.
 Returns
 -------
 append : ndarray
  A copy of `arr` with `values` appended to `axis`. Note that
  `append` does not occur in-place: a new array is allocated and
  filled. If `axis` is None, `out` is a flattened array.

numpy.append(arr, values, axis=None):

简答来说,就是arr和values会重新组合成一个新的数组,做为返回值。而axis是一个可选的值

当axis无定义时,是横向加成,返回总是为一维数组!

?
1
2
3
4
Examples
--------
>>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
array([1, 2, 3, 4, 5, 6, 7, 8, 9])

当axis有定义的时候,分别为0和1的时候。(注意加载的时候,数组要设置好,行数或者列数要相同。不然会有error:all the input array dimensions except for the concatenation axis must match exactly)

当axis为0时,数组是加在下面(列数要相同):

?
1
2
3
4
5
import numpy as np
aa= np.zeros((1,8))
bb=np.ones((3,8))
c = np.append(aa,bb,axis = 0)
print(c)
?
1
2
3
4
[[ 0. 0. 0. 0. 0. 0. 0. 0.]
 [ 1. 1. 1. 1. 1. 1. 1. 1.]
 [ 1. 1. 1. 1. 1. 1. 1. 1.]
 [ 1. 1. 1. 1. 1. 1. 1. 1.]]

当axis为1时,数组是加在右边(行数要相同):

?
1
2
3
4
5
import numpy as np
aa= np.zeros((3,8))
bb=np.ones((3,1))
c = np.append(aa,bb,axis = 1)
print(c)
?
1
2
3
[[ 0. 0. 0. 0. 0. 0. 0. 0. 1.]
 [ 0. 0. 0. 0. 0. 0. 0. 0. 1.]
 [ 0. 0. 0. 0. 0. 0. 0. 0. 1.]]

以上这篇对numpy.append()里的axis的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/qq_35019361/article/details/79055991