如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
"""
Append values to the end of an array.
Parameters
- - - - - - - - - -
arr : array_like
Values are appended to a copy of this array.
values : array_like
These values are appended to a copy of `arr`. It must be of the
correct shape (the same shape as `arr`, excluding `axis`). If
`axis` is not specified, `values` can be any shape and will be
flattened before use.
axis : int , optional
The axis along which `values` are appended. If `axis` is not
given, both `arr` and `values` are flattened before use.
Returns
- - - - - - -
append : ndarray
A copy of `arr` with `values` appended to `axis`. Note that
`append` does not occur in - place: a new array is allocated and
filled. If `axis` is None , `out` is a flattened array.
|
numpy.append(arr, values, axis=None):
简答来说,就是arr和values会重新组合成一个新的数组,做为返回值。而axis是一个可选的值
当axis无定义时,是横向加成,返回总是为一维数组!
1
2
3
4
|
Examples
- - - - - - - -
>>> np.append([ 1 , 2 , 3 ], [[ 4 , 5 , 6 ], [ 7 , 8 , 9 ]])
array([ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ])
|
当axis有定义的时候,分别为0和1的时候。(注意加载的时候,数组要设置好,行数或者列数要相同。不然会有error:all the input array dimensions except for the concatenation axis must match exactly)
当axis为0时,数组是加在下面(列数要相同):
1
2
3
4
5
|
import numpy as np
aa = np.zeros(( 1 , 8 ))
bb = np.ones(( 3 , 8 ))
c = np.append(aa,bb,axis = 0 )
print (c)
|
1
2
3
4
|
[[ 0. 0. 0. 0. 0. 0. 0. 0. ]
[ 1. 1. 1. 1. 1. 1. 1. 1. ]
[ 1. 1. 1. 1. 1. 1. 1. 1. ]
[ 1. 1. 1. 1. 1. 1. 1. 1. ]]
|
当axis为1时,数组是加在右边(行数要相同):
1
2
3
4
5
|
import numpy as np
aa = np.zeros(( 3 , 8 ))
bb = np.ones(( 3 , 1 ))
c = np.append(aa,bb,axis = 1 )
print (c)
|
1
2
3
|
[[ 0. 0. 0. 0. 0. 0. 0. 0. 1. ]
[ 0. 0. 0. 0. 0. 0. 0. 0. 1. ]
[ 0. 0. 0. 0. 0. 0. 0. 0. 1. ]]
|
以上这篇对numpy.append()里的axis的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_35019361/article/details/79055991