java创建二叉树
这段时间一直在复习数据结构的知识。
从最基础的开始,实现一个普通的二叉树。但发现也不那么简单。因为之前学数据结构时是用C语言写的。
指针用来对结构体的值操作比较好理解。但java没有指针。
而Node节点在方法中传递的是地址。
如果直接对形参进行new操作是错误的。无法改变实参的值的。这一点坑了我很久,然后一顿查资料。
时隔很久,终于填上这个坑了
下面是以递归创建的二叉树.还有一些常见的遍历和树的高度与树的最大宽度.
- 一个方法不能修改一个基本数据类型的参数
- 一个方法可以修改一个对象参数的状态
- 一个方法不能实现让对象参数引用一个新对象(这句话在这里尤为适用)
代码中的二叉树如下图
下面是非常简单的实现
这里为了,后面的输出格式,使用了JDK的动态代理。并写了一个接口
1
2
3
4
5
6
7
8
9
10
11
12
|
package test.tree;
public interface AbstractBinaryTree {
void printPostOder();
void printPostOderByRecursion();
void printPreOder();
void printPreOderByRecursion();
void printInOderByRecursion();
void printInOder();
void printHeight();
void printMaxWidth();
void printLevelOrder();
}
|
主要的代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
package test.tree;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;
/**
* 为了方便展示,并没有将Node属性私有
*/
class Node {
public String data;
public Node left = null ;
public Node right = null ;
public boolean flag;
Node(String data) {
this .data = data;
}
Node() {
}
@Override
public String toString() {
return this .data;
}
}
public class BinaryTree implements AbstractBinaryTree{
private Node root = new Node();
public Node getRoot() {
return root;
}
public void printNode(Node node) {
if (node.data == null ) {
System.out.print( "" );
} else {
System.out.print(node.data);
}
}
public BinaryTree(String tree) {
String[] treeNodes = tree.split( "," );
createTreeByRecursion(treeNodes);
}
private int createTreeByRecursion(Node node, String[] treeNodes, int n) {
if ( "#" .equals(treeNodes[n]))
return n + 1 ;
node.data = treeNodes[n];
node.left = new Node();
int left = createTreeByRecursion(node.left, treeNodes, n + 1 );
node.right = new Node();
int right = createTreeByRecursion(node.right, treeNodes, left);
return right;
}
public void createTreeByRecursion(String[] treeNodes) {
createTreeByRecursion(root, treeNodes, 0 );
}
/**
* 先序非递归创建
*/
public void createTree(String[] treeNodes) {
Stack<Node> stack = new Stack<>();
int index = 0 ;
Node node = root;
while (index < treeNodes.length) {
while ( true ) {
if ( "#" .equals(treeNodes[index])) {
node = stack.pop();
if (node.flag == false ) {
node.left = null ;
node.flag = true ;
stack.push(node);
} else {
node.right = null ;
}
// 记得加1
index++;
break ;
}
if (node.flag == true ) {
node.right = new Node();
node = node.right;
}
node.data = treeNodes[index];
stack.push(node);
node.left = new Node();
node = node.left;
index++;
}
if (node.flag == false ) {
stack.push(node);
node.flag = true ;
node = node.right;
} else {
node = stack.peek();
node.flag = true ;
}
}
}
// 递归调用的方法,需要将root传递进去
private void printPreOderByRecursion(Node node) {
if (node == null )
return ;
printNode(node);
printPreOderByRecursion(node.left);
printPreOderByRecursion(node.right);
}
public void printPreOderByRecursion() {
printPreOderByRecursion(root);
}
private void printInOderByRecursion(Node node) {
if (node == null )
return ;
printInOderByRecursion(node.left);
printNode(node);
printInOderByRecursion(node.right);
}
public void printInOderByRecursion() {
printInOderByRecursion(root);
}
private void printPostOderByRecursion(Node node) {
if (node == null )
return ;
printPostOderByRecursion(node.left);
printPostOderByRecursion(node.right);
printNode(node);
}
public void printPostOderByRecursion() {
printPostOderByRecursion(root);
}
// 非递归遍历二叉树
// 先序遍历
public void printPreOder() {
Stack<Node> stack = new Stack<>();
Node tempNode = root;
while ( true ) {
while (tempNode != null ) {
printNode(tempNode);
stack.push(tempNode);
tempNode = tempNode.left;
}
if (stack.isEmpty()) {
break ;
}
tempNode = stack.pop();
tempNode = tempNode.right;
}
}
// 中序遍历
public void printInOder() {
Stack<Node> stack = new Stack<>();
Node tempNode = root;
while ( true ) {
while (tempNode != null ) {
stack.push(tempNode);
tempNode = tempNode.left;
}
if (stack.isEmpty()) {
break ;
}
tempNode = stack.pop();
printNode(tempNode);
tempNode = tempNode.right;
}
}
// 后序遍历
public void printPostOder() {
Stack<Node> stack = new Stack<>();
Node tempNode = root;
while ( true ) {
while (tempNode != null ) {
if (tempNode.flag == true ) {
tempNode = tempNode.right;
} else {
stack.push(tempNode);
tempNode = tempNode.left;
}
}
tempNode = stack.pop();
if (tempNode.flag == false ) {
stack.push(tempNode);
tempNode.flag = true ;
tempNode = tempNode.right;
} else {
printNode(tempNode);
if (stack.isEmpty()) {
break ;
}
tempNode = stack.peek();
tempNode.flag = true ;
}
}
}
// 层序遍历 利用队列
public void printLevelOrder() {
Queue<Node> queue = new LinkedList<>();
Node tempNode = root;
queue.offer(tempNode);
while (!queue.isEmpty()) {
Node topNode = queue.poll();
if (topNode == null )
continue ;
printNode(topNode);
queue.offer(topNode.left);
queue.offer(topNode.right);
}
}
// 树高 递归,分别求出左子树的深度、右子树的深度,两个深度的较大值+1
public int getHeightByRecursion(Node node) {
if (node == null ) {
return 0 ;
}
int left = getHeightByRecursion(node.left);
int right = getHeightByRecursion(node.right);
return 1 + Math.max(left, right);
}
/**
* 为什么不直接写成调用 root,而是另写一个方法去调用呢 因为,这样可以不再为root,单独设置一个临时变量去存贮
* 而且也固定外部调用的方法,而不用关心内部的实现
*/
public void printHeight() {
int height = getHeightByRecursion(root);
System.out.print(height);
}
// 利用层序遍历,得到树的最大宽度
public void printMaxWidth() {
Queue<Node> queue = new LinkedList<>();
Queue<Node> queueTemp = new LinkedList<>();
int maxWidth = 1 ;
Node tempNode = root;
queue.offer(tempNode);
while (!queue.isEmpty()) {
while (!queue.isEmpty()) {
Node topNode = queue.poll();
if (topNode == null )
continue ;
if (topNode.left.data != null ) {
queueTemp.offer(topNode.left);
}
if (topNode.right.data != null ) {
queueTemp.offer(topNode.right);
}
}
maxWidth = Math.max(maxWidth, queueTemp.size());
queue = queueTemp;
queueTemp = new LinkedList<>();
}
System.out.print(maxWidth);
}
}
|
下面是写的测试类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
package test.tree;
import java.lang.reflect.Proxy;
public class BinaryTreeTest {
public static void main(String[] args) {
String treeStr = "A,B,D,#,#,#,C,#,E,#,#" ;
// String treeStr = "A,#,#";
AbstractBinaryTree binaryTree = BinaryTreeTest.proxyBinaryTree(treeStr);
binaryTree.printPostOder();
binaryTree.printPostOderByRecursion();
binaryTree.printPreOder();
binaryTree.printPreOderByRecursion();
binaryTree.printInOderByRecursion();
binaryTree.printInOder();
binaryTree.printLevelOrder();
binaryTree.printHeight();
binaryTree.printMaxWidth();
}
public static AbstractBinaryTree proxyBinaryTree(String treeStr) {
AbstractBinaryTree binaryTree = new BinaryTree(treeStr);
Object newProxyInstance = Proxy.newProxyInstance(binaryTree.getClass().getClassLoader(),
binaryTree.getClass().getInterfaces(), (proxy, method, args) -> {
System.out.println(method.getName());
Object invoke = method.invoke(binaryTree, args);
System.out.println();
return invoke;
});
return (AbstractBinaryTree) newProxyInstance;
}
}
|
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_34120430/article/details/80043472