GCD hdu1695容斥原理

时间:2023-12-04 19:24:38

GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5106    Accepted Submission(s): 1833

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
Output
For each test case, print the number of choices. Use the format in the example.
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
Sample Output
Case 1: 9
Case 2: 736427
Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5106    Accepted Submission(s): 1833

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
Output
For each test case, print the number of choices. Use the format in the example.
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
Sample Output
Case 1: 9
Case 2: 736427
Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <vector>
using namespace std;
vector<int>q[];
long long a[]={};
int bb;
void init()
{
int i,j;
for(i=; i<; i++)a[i]=i,q[i].clear();
for(i=; i<; i+=)
a[i]/=,q[i].push_back();
for(i=; i<; i+=)
if(a[i]==i)
for(j=i; j<; j+=i)
a[j]=a[j]/i*(i-),q[j].push_back(i);
for(i=; i<; i++)
a[i]+=a[i-];
}
int fun(int x,int y)
{
int i,cnt=;
int sum=;
for(i=;i<q[y].size();i++)
{
if(x&(<<i))
{
sum*=q[y][i];
cnt++;
}
}
if(cnt&)
return bb/sum;
else return -(bb/sum);
}
long long work(int x)
{
int i;
long long sum=;
for(i=;i<(<<q[x].size());i++)
{
sum+=fun(i,x);
}
return bb-sum;
}
int main()
{
init();
int i,t,j,aa,c,d,k;
long long ans;
scanf("%d",&t);
for(i=; i<=t; i++)
{
scanf("%d%d%d%d%d",&aa,&bb,&c,&d,&k);
if(bb>d)swap(bb,d);
if(k)
bb/=k,d/=k;
else
{
printf("Case %d: %d\n",i,);
continue;
}
ans=a[bb];
for(j=bb+; j<=d; j++)
{
ans+=work(j);
}
printf("Case %d: %I64d\n",i,ans);
}
}