【bzoj3513】[MUTC2013]idiots FFT

时间:2022-10-03 21:45:15

题目描述

给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率。

输入

第一行T(T<=100),表示数据组数。
接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个数表示a_i。
3≤N≤10^5,1≤a_i≤10^5

输出

T行,每行一个整数,四舍五入保留7位小数。

样例输入

2
4
1 3 3 4
4
2 3 3 4

样例输出

0.5000000
1.0000000


题解

FFT

考虑什么样的3根木棍不能构成三角形:最长边大于等于其余两边之和。

因为长度只有$10^5$,因此可以直接记录由两根木棒拼成某长度的方案数,然后直接求前缀和统计答案即可。

但是朴素的统计方案数的时间复杂度是$O(n^2)$的,会TLE。

考虑到两边的长度s2[]和一边的长度s1[]的卷积有关,因此可以先使用FFT求某长度的个数s1[]的卷积,然后由于两根相同的木棒统计到了答案中,需要减掉;其余的方案出现了2次,需要再除以2.

最后求前缀和统计答案即可。注意需要long long。

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
typedef long long ll;
const int len = 262144;
const double pi = acos(-1);
struct data
{
double x , y;
data() {}
data(double x0 , double y0) {x = x0 , y = y0;}
data operator+(const data &a)const {return data(x + a.x , y + a.y);}
data operator-(const data &a)const {return data(x - a.x , y - a.y);}
data operator*(const data &a)const {return data(x * a.x - y * a.y , x * a.y + y * a.x);}
}a[N << 2];
int w[N];
ll sum[N << 2];
void fft(int flag)
{
int i , j , k;
for(i = k = 0 ; i < len ; i ++ )
{
if(i > k) swap(a[i] , a[k]);
for(j = len >> 1 ; (k ^= j) < j ; j >>= 1);
}
for(k = 2 ; k <= len ; k <<= 1)
{
data wn(cos(2 * pi * flag / k) , sin(2 * pi * flag / k));
for(i = 0 ; i < len ; i += k)
{
data w(1 , 0) , t;
for(j = i ; j < i + (k >> 1) ; j ++ , w = w * wn)
t = w * a[j + (k >> 1)] , a[j + (k >> 1)] = a[j] - t , a[j] = a[j] + t;
}
}
}
void work()
{
int i;
fft(1);
for(i = 0 ; i < len ; i ++ ) a[i] = a[i] * a[i];
fft(-1);
for(i = 0 ; i < len ; i ++ ) a[i].x /= len;
}
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
memset(a , 0 , sizeof(a));
int n , i;
ll ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &w[i]) , a[w[i]].x ++ ;
work();
for(i = 1 ; i <= n ; i ++ ) a[w[i] * 2].x -- ;
for(i = 1 ; i < len ; i ++ ) sum[i] = sum[i - 1] + (ll)(a[i].x / 2 + 0.1);
for(i = 1 ; i <= n ; i ++ ) ans += sum[w[i]];
printf("%.7Lf\n" , 1 - (long double)ans / ((long double)n * (n - 1) * (n - 2) / 6));
}
return 0;
}

【bzoj3513】[MUTC2013]idiots FFT的更多相关文章

  1. 【BZOJ3160】万径人踪灭(FFT,Manacher)

    [BZOJ3160]万径人踪灭(FFT,Manacher) 题面 BZOJ 题解 很容易想到就是满足条件的子序列个数减去回文子串的个数吧... 至于满足条件的子序列 我们可以依次枚举对称轴 如果知道关 ...

  2. 【BZOJ3527】力(FFT)

    [BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...

  3. 【BZOJ4827】【HNOI2017】礼物(FFT)

    [BZOJ4827][HNOI2017]礼物(FFT) 题面 Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每 ...

  4. bzoj 3513&colon; &lbrack;MUTC2013&rsqb;idiots FFT

    bzoj 3513: [MUTC2013]idiots FFT 链接 bzoj 思路 参考了学姐TRTTG的题解 统计合法方案,最后除以总方案. 合法方案要不好统计,统计不合法方案. \(a+b&lt ...

  5. 【Matlab】快速傅里叶变换&sol; FFT&sol; fftshift&sol; fftshift&lpar;fft&lpar;fftshift&lpar;s&rpar;&rpar;&rpar;

    [自我理解] fft:可以指定点数的快速傅里叶变换 fftshift:将零频点移到频谱的中间 用法: Y=fftshift(X) Y=fftshift(X,dim) 描述:fftshift移动零频点到 ...

  6. 【BZOJ】3160&colon; 万径人踪灭 FFT&plus;回文串

    [题意]给定只含'a'和'b'字符串S,求不全连续的回文子序列数.n<=10^5. [算法]FFT+回文串 [题解]不全连续的回文子序列数=回文子序列总数-回文子串数. 回文子串数可以用回文串算 ...

  7. 【BZOJ4624】农场种植 FFT

    [BZOJ4624]农场种植 Description 农夫约翰想要在一片巨大的土地上建造一个新的农场. 这块土地被抽象为个 R*C 的矩阵.土地中的每个方格都可以用来生产一种食物:谷物(G)或者是牲畜 ...

  8. 【BZOJ3160】万径人踪灭 Manacher&plus;FFT

    [BZOJ3160]万径人踪灭 Description Input Output Sample Input Sample Output HINT 题解:自己想出来1A,先撒花~(其实FFT部分挺裸的) ...

  9. bzoj 3513 &lbrack;MUTC2013&rsqb;idiots FFT 生成函数

    [MUTC2013]idiots Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 806  Solved: 265[Submit][Status][Di ...

随机推荐

  1. Knockout&period;Js案例一Introduction

    </strong></p> <p>Last name: <strong data-bind="text:lastName ">tod ...

  2. ora-01033&colon;oracle initialization or shutdown in progress 解决方法

    今天研究Oracle遇到了这个问题ora-01033:oracle initialization or shutdown in progress,经过分析研究终于解决了,写下来纪念一下.我的库是ora ...

  3. 『Kruscal重构树 Exkruscal』

    新增一道例题及讲解 Exkruscal \(Exkruscal\)又称\(Kruscal\)重构树,是一种利用经典算法\(Kruscal\)来实现的构造算法,可以将一张无向图重构为一棵具有\(2n-1 ...

  4. 《Hello world 团队》第二次作业:团队项目选题报告

    项目 内容 这个作业属于哪个课程 2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 实验六 团队作业2:团队项目选题 团队名称 <hello--world团队> ...

  5. REST(Representational state transfer)的四个级别以及HATEOAS介绍

    Rest RES(Representational state transfer):表现层状态转移.其实它省略了主语,「表现层」其实指的是「资源」的「表现层」,所以通俗来讲就是:资源在网络中以某种表现 ...

  6. JS中几种常见的高阶函数

    高阶函数:英文叫Higher-order function.JavaScript的函数其实都指向某个变量.既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数 ...

  7. 福利爬虫妹子图之获取种子url

    import os import uuid from lxml import html import aiofiles import logging from ruia import Spider, ...

  8. 学 shell &lpar;1&sol;5&rpar;

    假设这是某脚本 x.sh 的内容,使用 sh x.sh arg1 来执行该脚本 #!/bin/bashcd `dirname $0`/..source scripts/status.shstart $ ...

  9. TOP100summit:【分享实录】京东1小时送达的诞生之路

    本篇文章内容来自2016年TOP100summit 京东WMS产品负责人李亚曼的案例分享. 编辑:Cynthia 李亚曼:京东 WMS产品负责人.从事电商物流行业近10年,有丰富的物流行业经验,独立打 ...

  10. 转 kvm、qemu-kvm、ibvirt及openstack&comma;之间的关系

    KVM是最底层的hypervisor,它是用来模拟CPU的运行,它缺少了对network和周边I/O的支持,所以我们是没法直接用它的. QEMU-KVM就是一个完整的模拟器,它是构建基于KVM上面的, ...