题目:http://acm.hdu.edu.cn/showproblem.php?pid=4609
算不合法的比较方便;
枚举最大的边,每种情况算了2次,而全排列算了6次,所以还要乘3;
注意枚举最大边的范围是 mx 而不是 lim !!否则会超过开的数组范围!!!
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
typedef long long ll;
int const xn=(<<),xm=1e5+;
db const Pi=acos(-1.0);
int n,rev[xn],lim,num[xm];
struct com{db x,y;}a[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y; a[j+mid+k]=x-y;
}
}
}
if(tp==)return;
for(int i=;i<lim;i++)a[i].x=a[i].x/lim;
}
int main()
{
int T=rd();
while(T--)
{
n=rd(); int mx=;
memset(num,,sizeof num);
for(int i=,x;i<=n;i++)x=rd(),num[x]++,mx=max(mx,x);
lim=; int l=;
while(lim<=mx+mx)lim<<=,l++;
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
for(int i=;i<lim;i++)a[i].x=,a[i].y=;
for(int i=;i<=mx;i++)a[i].x=num[i];
fft(a,);
for(int i=;i<lim;i++)a[i]=a[i]*a[i];
fft(a,-);
for(int i=;i<lim;i+=)a[i].x=(ll)(a[i].x+0.5)-num[i/];
ll sum=(ll)n*(n-)*(n-),ans=sum; ll pre=;
for(int i=;i<=mx;i++)//mx
{
pre+=*(ll)(a[i].x+0.5);
if(num[i])ans-=num[i]*pre;//num[i]*...!
}
printf("%.7f\n",1.0*ans/sum);
}
return ;
}
hdu 4609 3-idiots —— FFT的更多相关文章
-
HDU 4609 3-idiots(FFT)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给出n个正整数(数组A).每次随机选出三个数.问这三个数能组成三角形的概率为多大? 思路: ...
-
HDU 4609 3-idiots (组合数学 + FFT)
题意:给定 n 条边,问随机选出 3 条边,能组成三角形的概率是多少. 析:答案很明显就是 能组成三角形的种数 / (C(n, 3)).现在的问题是怎么求能组成三角形的种数. 这个博客说的非常清楚了 ...
-
HDU 4609 3-idiots ——(FFT)
这是我接触的第一个关于FFT的题目,留个模板. 这题的题解见:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html. FFT的 ...
-
hdu 4609: 3-idiots (FFT)
题目链接 题意:从N个数中,选出三个两两不同的数,求这三个数能够作为一个三角形的三边长的概率. 题解:用一个数组num[]记录大小为 i 的数出现的次数,通过 num[] 卷 num[] 得到 num ...
-
解题:HDU 4609 Three Idiots
题面 要求组合的方法显然我们需要对桶卷积,即设$F(x)=\sum\limits_{i=1}^{maxx}x^{cnt[i]}$,然后我们初步的先把$F^2(x)$卷出来,表示选两条边.然后我们发现如 ...
-
hdu 4609 3-idiots [fft 生成函数 计数]
hdu 4609 3-idiots 题意: 给出\(A_i\),问随机选择一个三元子集,选择的数字构成三角形的三边长的概率. 一开始一直想直接做.... 先生成函数求选两个的方案(注意要减去两次选择同 ...
-
快速傅里叶变换应用之二 hdu 4609 3-idiots
快速傅里叶变化有不同的应用场景,hdu4609就比较有意思.题目要求是给n个线段,随机从中选取三个,组成三角形的概率. 初始实在没发现这个怎么和FFT联系起来,后来看了下别人的题解才突然想起来:组合计 ...
-
bzoj 3513: [MUTC2013]idiots FFT
bzoj 3513: [MUTC2013]idiots FFT 链接 bzoj 思路 参考了学姐TRTTG的题解 统计合法方案,最后除以总方案. 合法方案要不好统计,统计不合法方案. \(a+b< ...
-
hdu 4609 3-idiots <;FFT>;
链接: http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意: 给定 N 个正整数, 表示 N 条线段的长度, 问任取 3 条, 可以构成三角形的概率为多 ...
-
HDU 4609 FFT模板
http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给你n个数,问任意取三边能够,构成三角形的概率为多少. 思路:使用FFT对所有长度的个数进行卷积(\ ...
随机推荐
-
逐行读取txt文件,使用Linq与StreamReader的Readline方法
List<string[]> list = File.ReadLines("YourFile.txt") .Select(r => r.TrimEnd('#')) ...
-
C#定时执行一个操作
一个客户端向服务器端socket发送报文,但是服务器端限制了发送频率,假如10秒内只能发送1次,这时客户端也要相应的做限制,初步的想法是在配置文件中保存上次最后发送的时间,当前发送时和这个上次最后时间 ...
-
poj1927Area in Triangle
链接 物理渣只能搜题解了.. 分三种情况 1.len>=a+b+c 2.len<内切圆半径 圆的面积是最大的 -->以len为周长的圆 3.看这篇http://blog.sina.c ...
-
Ajax缓存解决办法
解决办法有如下几种: 1.在服务端加 header("Cache-Control: no-cache, must-revalidate");(如php中) 2.在aja ...
-
UVA11388 GCD LCM1 2 -1
题目: 给你两个数G和L,求a和b,他们的最大公约数为G和最小公倍数为L,输出a最小时的a和b.如果不存在在输出-1. Sample Input 2 1 2 3 4 Output for Samp ...
-
NSUserDefaults设置bool值重新启动后bool仅仅设置丢失问题
今天使用NSUserDefaults保存bool至重新启动后发现bool值没有保存对 NSUserDefaults *ud = [NSUserDefaults standardUserDefaults ...
-
vb6加载时提示出错,窗体log文件中错误信息为:控件 XX 的类 MSComctlLib.ListView 不是一个已加载的控件类。
解决办法:单击[工程] -- [部件] 添加此Microsoft Windows Common Controls-6.0 (SP6)部件,如果列表中没有,浏览到~\project\包\Support中 ...
-
弹出式菜单(下拉菜单)实现——PopupMenu
PopupMenu代表弹出式菜单,它会在指定组件上弹出PopupMenu,默认情况下,PopupMenu会显示在该组件的下方或上方.PopupMenu可增加多个菜单项,并可为菜单项增加子菜单. 使用P ...
-
el 表达式遍历Map
el 表达式遍历Map<c:forEach var="item" items="${payMentMap}"> <option value=& ...
-
PAT1006:Sign In and Sign Out
1006. Sign In and Sign Out (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...