【题目链接】 http://acm.hdu.edu.cn/showproblem.php?pid=5763
【题目大意】
给出两个串S和T,可以将S串中出现的T替换为*,问S串有几种表达方式。
【题解】
我们定义数组f为S串中T出现的最后一个字母所在的位置,那么ans[i]=ans[i-1]+f[i-1]?ans[i-lenT]:0,一遍递推即可,所以关键就在于求出f数组了,f数组可以用kmp求,由于最近练FFT,用FFT求距离卷积匹配为0的位置,就是f数组了。
【代码】
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int N=524300;
int n,pos[N];
namespace FFT{
struct comp{
double r,i;
comp(double _r=0,double _i=0):r(_r),i(_i){}
comp operator +(const comp&x){return comp(r+x.r,i+x.i);}
comp operator -(const comp&x){return comp(r-x.r,i-x.i);}
comp operator *(const comp&x){return comp(r*x.r-i*x.i,i*x.r+r*x.i);}
comp conj(){return comp(r,-i);}
}A[N],B[N];
const double pi=acos(-1.0);
void FFT(comp a[],int n,int t){
for(int i=1;i<n;i++)if(pos[i]>i)swap(a[i],a[pos[i]]);
for(int d=0;(1<<d)<n;d++){
int m=1<<d,m2=m<<1;
double o=pi*2/m2*t;
comp _w(cos(o),sin(o));
for(int i=0;i<n;i+=m2){
comp w(1,0);
for(int j=0;j<m;j++){
comp& A=a[i+j+m],&B=a[i+j],t=w*A;
A=B-t;B=B+t;w=w*_w;
}
}
}if(t==-1)for(int i=0;i<n;i++)a[i].r/=n;
}
}
const int mod=1e9+7;
int T,Cas=1,l1,l2,ans[N],cnt=0,a[N],b[N],f[N];
FFT::comp A[N],B[N],C[N];
char s1[N],s2[N];
int main(){
scanf("%d",&T);
while(T--){
scanf(" %s %s",&s1,&s2);
memset(f,0,sizeof(f));
memset(ans,0,sizeof(ans));
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
l1=strlen(s1); l2=strlen(s2);
for(int i=0;i<l1;i++)a[i]=s1[i]-'a'+1;
for(int i=0;i<l2;i++)b[l2-1-i]=s2[i]-'a'+1;
int N=1; while(N<l1+l2)N<<=1;
int j=__builtin_ctz(N)-1;
for(int i=0;i<N;i++)C[i]=FFT::comp(0,0);
for(int i=0;i<N;i++){pos[i]=pos[i>>1]>>1|((i&1)<<j);}
for(int i=0;i<N;i++)A[i]=FFT::comp(a[i]*a[i]*a[i],0),B[i]=FFT::comp(b[i],0);
FFT::FFT(A,N,1);FFT::FFT(B,N,1);
for(int i=0;i<N;i++)C[i]=C[i]+A[i]*B[i];
for(int i=0;i<N;i++)A[i]=FFT::comp(a[i],0),B[i]=FFT::comp(b[i]*b[i]*b[i],0);
FFT::FFT(A,N,1);FFT::FFT(B,N,1);
for(int i=0;i<N;i++)C[i]=C[i]+A[i]*B[i];
for(int i=0;i<N;i++)A[i]=FFT::comp(a[i]*a[i],0),B[i]=FFT::comp(b[i]*b[i],0);
FFT::FFT(A,N,1);FFT::FFT(B,N,1);
for(int i=0;i<N;i++)C[i]=C[i]-A[i]*B[i]*FFT::comp(2,0);
FFT::FFT(C,N,-1);
for(int i=l2-1;i<l1;i++){
if(C[i].r<0.5)f[i]=1;
}ans[0]=1;
for(int i=1;i<=l1;i++){
ans[i]=ans[i-1];
if(f[i-1])ans[i]+=ans[i-l2];
if(ans[i]>mod)ans[i]-=mod;
}printf("Case #%d: %d\n",Cas++,ans[l1]);
}return 0;
}