Building roads
Description
Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2
roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows. Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns. That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to. We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other. Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|. Input
The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends
with each other. Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively. Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one. Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other. The same pair of barns never appears more than once. Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once. You should note that all the coordinates are in the range [-1000000, 1000000]. Output
You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1.
Sample Input 4 1 1 Sample Output 53246 Source
POJ Monthly--2006.01.22,zhucheng
|
题意:
有 N 个牛栏,如今通过一条通道(s1,s2)把他们连起来,他们之间有一些约束关系,一些牛栏不能连在同一个点,一些牛栏必须连在同一个点,如今问有没有可能把他们都连好,并且满足全部的约束关系,假设能够,输出两个牛栏之间距离最大值的最小情况。
思路:
二分枚举最长距离。用2SAT推断可行与否。最后输出答案,假设没有,那么输出-1
条件1 i,j 相互讨厌, <i,j+n> <i+n,j> <j,i+n> <j+n,i>
条件2 i,j 关系好 <i,j> <j,i> <j+n,i+n> <i+n,j+n>
条件3
1:dis(i,s1) + dis(j,s1)>m <i,j+n> <j,i+n>
2:i j都连s2的时候与上面类似
3:dis(i,s1)+dis(s1,s2)+dis(s2,j)>m <i,j> <j+n,i+n>
4:i连s2 j连s1条件与上面类似
代码:
#include <cstdio>
#include <cstring>
#define INF 0x3f3f3f3f
#define maxn 1005
#define MAXN 4000005
using namespace std; int n,m1,m2,num,flag,ans,tot;
int head[maxn],X[2005],Y[2005],dist1[maxn],dist2[maxn];
int scc[maxn];
int vis[maxn];
int stack1[maxn];
int stack2[maxn];
struct edge
{
int v,next;
} g[MAXN]; void init()
{
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
memset(scc,0,sizeof(scc));
stack1[0] = stack2[0] = num = 0;
flag = 1;
}
void addedge(int u,int v)
{
num++;
g[num].v = v;
g[num].next = head[u];
head[u] = num;
}
int abs(int x)
{
if(x>=0) return x;
return -x;
}
int caldist(int x1,int y1,int x2,int y2)
{
return abs(x1-x2)+abs(y1-y2);
}
void dfs(int cur,int &sig,int &cnt)
{
if(!flag) return;
vis[cur] = ++sig;
stack1[++stack1[0]] = cur;
stack2[++stack2[0]] = cur;
for(int i = head[cur]; i; i = g[i].next)
{
if(!vis[g[i].v]) dfs(g[i].v,sig,cnt);
else
{
if(!scc[g[i].v])
{
while(vis[stack2[stack2[0]]] > vis[g[i].v])
stack2[0] --;
}
}
}
if(stack2[stack2[0]] == cur)
{
stack2[0] --;
++cnt;
do
{
scc[stack1[stack1[0]]] = cnt;
int tmp = stack1[stack1[0]];
if((tmp >= n && scc[tmp - n] == cnt) || (tmp < n && scc[tmp + n] == cnt))
{
flag = false;
return;
}
}
while(stack1[stack1[0] --] != cur);
}
}
void Twosat()
{
int i,sig,cnt;
sig = cnt = 0;
for(i=0; i<n+n&&flag; i++)
{
if(!vis[i]) dfs(i,sig,cnt);
}
}
void solve()
{
int i,j,u,v,t,le=0,ri=4000000,mid;
ans=-1;
while(le<=ri)
{
mid=(le+ri)>>1;
init();
num=0;
for(i=1;i<=m1;i++)
{
u=X[i],v=Y[i];
addedge(u,v+n);
addedge(u+n,v);
addedge(v,u+n);
addedge(v+n,u);
}
for(i=m1+1;i<=m1+m2;i++)
{
u=X[i],v=Y[i];
addedge(u,v);
addedge(v,u);
addedge(u+n,v+n);
addedge(v+n,u+n);
}
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if(i==j) continue ;
if(dist1[i]+dist1[j]>mid) addedge(i,j+n);
if(dist2[i]+dist2[j]>mid) addedge(i+n,j);
if(dist1[i]+dist2[j]+tot>mid) addedge(i,j);
if(dist2[i]+dist1[j]+tot>mid) addedge(i+n,j+n);
}
}
Twosat();
if(flag)
{
ans=mid;
ri=mid-1;
}
else le=mid+1;
}
}
int main()
{
int i,j,t,x,y,x1,y1,x2,y2;
while(~scanf("%d%d%d",&n,&m1,&m2))
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
tot=caldist(x1,y1,x2,y2);
for(i=0; i<n; i++)
{
scanf("%d%d",&x,&y);
dist1[i]=caldist(x,y,x1,y1);
dist2[i]=caldist(x,y,x2,y2);
}
for(i=1;i<=m1+m2;i++)
{
scanf("%d%d",&X[i],&Y[i]);
X[i]--; Y[i]--;
}
solve();
printf("%d\n",ans);
}
return 0;
}
poj 2749 Building roads (二分+拆点+2-sat)的更多相关文章
-
HDU 1815, POJ 2749 Building roads(2-sat)
HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...
-
POJ 2749 Building roads 2-sat+二分答案
把爱恨和最大距离视为限制条件,可以知道,最大距离和限制条件多少具有单调性 所以可以二分最大距离,加边+check #include<cstdio> #include<algorith ...
-
[poj] 2749 building roads
原题 2-SAT+二分答案! 最小的最大值,这肯定是二分答案.而我们要2-SATcheck是否在该情况下有可行解. 对于目前的答案limit,首先把爱和恨连边,然后我们n^2枚举每两个点通过判断距离来 ...
-
poj 3625 Building Roads
题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several ...
-
POJ Building roads [二分答案 2SAT]
睡觉啦 #include <iostream> #include <cstdio> #include <cstring> #include <algorith ...
-
POJ 2749 2SAT判定+二分
题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大 距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相 ...
-
poj 3625 Building Roads(最小生成树,二维坐标,基础)
题目 //最小生成树,只是变成二维的了 #define _CRT_SECURE_NO_WARNINGS #include<stdlib.h> #include<stdio.h> ...
-
poj 2749
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6091 Accepted: 2046 De ...
-
Building roads
Building roads Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
随机推荐
-
新版本来袭:Apache Spark 1.5新特性介绍
年9月9日发布了1.5版本,该版本由230+开发人员和80+机构参与,修复了1400多个补丁,该版本可以通过 http://spark.apache.org/downloads.html进行下载.Sp ...
-
支持事件穿透?使用pointer-events样式
使用绝对定位元素,让元素A完全盖住元素B时,如何通过元素A来响应元素B的事件呢? 上图可以用下面的SVG代码来实现: <svg width="200" height=&quo ...
-
深入解析字符串的比较方法:“==”操作符;String.Equals方法;String.Compare方法;String.CompareOrdinal方法。
1:要判断2个字符串变量是否相等,最高效的方法是看它们是否指向相同的内存地址.前面使用RefernceEquals方法来比较.如果2个变量指向的是不同的内存地址,那么就需要逐字符的比较2个字符串的变量 ...
-
X264的版本号
0 X264官方地扯 http://www.videolan.org/developers/x264.html 1 X264官方编译的二进制程序命名格式 官方编译出了LINUX,Win32,Win64 ...
-
Ljava.lang.Object;@ba8a1dc
因为你从数据库读出数据后,存入到list集合上时,如果你没有指定要存入的数据的类型,系统会自动给你赋一个object类型,他是所以类的鼻祖,你取出数据要进行转型,转化成你自己想要的数据类型才能显示.它 ...
-
C语言-简单选择排序与直接插入排序的实现
/* Name: selectSort and insertSort Copyright: nyist Author: 润青 Date: 01/10/18 19:30 Description: 实现了 ...
-
Cocos2d-x学习笔记1
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u014734779/article/details/26077453 1.创建新的cocos2d-x ...
-
C++_代码重用1-总览
C++的主要目的是促进代码重用. 公有继承是实现这一目标的机制之一: 本身是另一个类的成员,这种方法称为包含.组合.层次化. 另一种方法是使用私有.保护继承. 通常包含.私有继承和保护继承用于实现ha ...
-
CentOS7 minimal 没有netstat命令
在CentOS 7 minimal中使用netstat 时,发现显示如下,明显没有了netstat 命令 [root@localhost ~]# netstat -a -bash: netstat: ...
-
[BZOJ4760][Usaco2017 Jan]Hoof, Paper, Scissors dp
4760: [Usaco2017 Jan]Hoof, Paper, Scissors Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 136 Solv ...