I am trying to connect either the rows of an nxm
array to 1xm
arrays in n
individual components or connect slices of an 1xn*m
array to 1xm
arrays in n
individual components. The original nxm
or 1xn*m
array would then be used as an optimization parameter. The problem is that the assembly seems to have some serious problems when I do this. I either get obviously wrong answers or a size mismatch error.
我尝试将nxm数组的行连接到n个单独的组件中的1xm数组,或者将1xn*m数组的片段连接到n个独立组件中的1xm数组。最初的nxm或1xn*m数组将被用作优化参数。问题是,当我这样做时,大会似乎有一些严重的问题。我要么得到明显错误的答案,要么是大小不匹配的错误。
I have been able to get the assembly to work by passing in n
1xm
arrays using exec()
, but I would much prefer the method explained previously. If anyone can tell me how to make this work in a proper way I would really appreciate it.
通过使用exec(),我可以通过传入n 1xm数组来让程序集工作,但是我更喜欢前面解释的方法。如果有人能告诉我如何以合适的方式进行这项工作,我将非常感激。
I have provided a simplified example of code for what works and what I want to do. The method I would like to use is shown first, followed by the method I have gotten to work, but seriously dislike.
我提供了一个简化的代码示例,说明了什么是可行的,什么是我想要做的。我想使用的方法首先显示,然后是我开始工作的方法,但是非常不喜欢。
What I want to do
from openmdao.main.api import Assembly, Component
from openmdao.lib.datatypes.api import Float, Array, List
from openmdao.lib.drivers.api import DOEdriver, SLSQPdriver, COBYLAdriver, CaseIteratorDriver
from pyopt_driver.pyopt_driver import pyOptDriver
import numpy as np
class component1(Component):
x = Float(iotype='in')
y = Float(iotype='in')
term1 = Float(iotype='out')
a = Float(iotype='in', default_value=1)
def execute(self):
x = self.x
a = self.a
term1 = a*x**2
self.term1 = term1
print "In comp1", self.name, self.a, self.x, self.term1
def list_deriv_vars(self):
return ('x',), ('term1',)
def provideJ(self):
x = self.x
a = self.a
dterm1_dx = 2.*a*x
J = np.array([[dterm1_dx]])
print 'In comp1, J = %s' % J
return J
class component2(Component):
x = Float(iotype='in')
y = Float(iotype='in')
term1 = Float(iotype='in')
f = Float(iotype='out')
q = Array(np.zeros(2), iotype='in', dtype='float')
def execute(self):
y = self.y + self.q[0]
x = self.x + self.q[1]
term1 = self.term1
f = term1 + x + y**2
print 'q = %s' % self.q
self.f = f
print "In comp2", self.name, self.x, self.y, self.term1, self.f
class summer(Component):
total = Float(iotype='out', desc='sum of all f values')
def __init__(self, size):
super(summer, self).__init__()
self.size = size
self.add('fs', Array(np.zeros(size), iotype='in', desc='f values from all cases'))
def execute(self):
self.total = sum(self.fs)
print 'In summer, fs = %s and total = %s' % (self.fs, self.total)
class assembly(Assembly):
x = Float(iotype='in')
y = Float(iotype='in')
total = Float(iotype='out')
def __init__(self, size):
super(assembly, self).__init__()
self.size = size
self.add('a_vals', Array(np.zeros(size), iotype='in', dtype='float'))
self.add('q', Array(np.zeros((size, 2)), iotype='in', dtype='float'))
self.add('fs', Array(np.zeros(size), iotype='out', dtype='float'))
print 'in init a_vals = %s, fs = %s' % (self.a_vals, self.fs)
def configure(self):
self.add('driver', SLSQPdriver())
# self.add('driver', pyOptDriver())
# self.driver.optimizer = 'SNOPT'
# self.driver.pyopt_diff = True
#create this first, so we can connect to it
self.add('summer', summer(size=len(self.a_vals)))
self.connect('summer.total', 'total')
print 'in configure a_vals = %s' % self.a_vals
# create instances of components
for i in range(0, self.size):
c1 = self.add('comp1_%d' % i, component1())
c1.missing_deriv_policy = 'assume_zero'
c2 = self.add('comp2_%d'%i, component2())
self.connect('a_vals[%d]' % i, 'comp1_%d.a' % i)
self.connect('x', ['comp1_%d.x' % i, 'comp2_%d.x' % i])
self.connect('y', ['comp1_%d.y' % i, 'comp2_%d.y' % i])
self.connect('comp1_%d.term1' % i, 'comp2_%d.term1' % i)
self.connect('q[%d, :]' % i, 'comp2_%d.q' % i)
self.connect('comp2_%d.f' % i, 'summer.fs[%d]' % i)
self.driver.workflow.add(['comp1_%d' % i, 'comp2_%d' % i])
# self.connect('summer.fs[:]', 'fs[:]')
self.driver.workflow.add(['summer'])
# set up main driver (optimizer)
self.driver.iprint = 1
self.driver.maxiter = 100
self.driver.accuracy = 1.0e-6
self.driver.add_parameter('x', low=-5., high=5.)
self.driver.add_parameter('y', low=-5., high=5.)
self.driver.add_parameter('q', low=0., high=5.)
self.driver.add_objective('summer.total')
if __name__ == "__main__":
""" the result should be -1 at (x, y) = (-0.5, 0) """
import time
from openmdao.main.api import set_as_top
a_vals = np.array([1., 1., 1., 1.])
test = set_as_top(assembly(size=len(a_vals)))
test.a_vals = a_vals
print 'in main, test.a_vals = %s, test.fs = %s' % (test.a_vals, test.fs)
test.x = 2.
test.y = -5
test.q = np.tile(np.arange(0., 2.), (4, 1))
print test.q
tt = time.time()
test.run()
print "Elapsed time: ", time.time()-tt, "seconds"
print 'result = ', test.summer.total
print '(x, y) = (%s, %s)' % (test.x, test.y)
print 'fs = %s' % test.fs
print test.fs
----------
What works
from openmdao.main.api import Assembly, Component
from openmdao.lib.datatypes.api import Float, Array, List
from openmdao.lib.drivers.api import DOEdriver, SLSQPdriver, COBYLAdriver, CaseIteratorDriver
from pyopt_driver.pyopt_driver import pyOptDriver
import numpy as np
class component1(Component):
x = Float(iotype='in')
y = Float(iotype='in')
term1 = Float(iotype='out')
a = Float(iotype='in', default_value=1)
def execute(self):
x = self.x
a = self.a
term1 = a*x**2
self.term1 = term1
print "In comp1", self.name, self.a, self.x, self.term1
def list_deriv_vars(self):
return ('x',), ('term1',)
def provideJ(self):
x = self.x
a = self.a
dterm1_dx = 2.*a*x
J = np.array([[dterm1_dx]])
# print 'In comp1, J = %s' % J
return J
class component2(Component):
x = Float(iotype='in')
y = Float(iotype='in')
term1 = Float(iotype='in')
f = Float(iotype='out')
q = Array(np.zeros(2), iotype='in', dtype='float')
def execute(self):
y = self.y + self.q[0]
x = self.x + self.q[1]
term1 = self.term1
f = term1 + x + y**2
print 'in comp2 q = %s' % self.q
self.f = f
print "In comp2", self.name, self.x, self.y, self.term1, self.f
class summer(Component):
total = Float(iotype='out', desc='sum of all f values')
def __init__(self, size):
super(summer, self).__init__()
self.size = size
self.add('fs', Array(np.zeros(size), iotype='in', desc='f values from all cases'))
def execute(self):
self.total = sum(self.fs)
print 'In summer, fs = %s and total = %s' % (self.fs, self.total)
class assembly(Assembly):
x = Float(iotype='in')
y = Float(iotype='in')
total = Float(iotype='out')
def __init__(self, size):
super(assembly, self).__init__()
self.size = size
self.add('a_vals', Array(np.zeros(size), iotype='in', dtype='float'))
self.add('fs', Array(np.zeros(size), iotype='out', dtype='float'))
for i in range(0, size):
self.add('q_%d' % i, Array(np.zeros(2), iotype='in', dtype='float'))
print 'in init a_vals = %s, fs = %s' % (self.a_vals, self.fs)
def configure(self):
# self.add('driver', SLSQPdriver())
self.add('driver', pyOptDriver())
self.driver.optimizer = 'SNOPT'
# self.driver.pyopt_diff = True
#create this first, so we can connect to it
self.add('summer', summer(size=len(self.a_vals)))
self.connect('summer.total', 'total')
print 'in configure a_vals = %s' % self.a_vals
# print 'in configure q = %s' % self.q
# create instances of components
for i in range(0, self.size):
c1 = self.add('comp1_%d' % i, component1())
c1.missing_deriv_policy = 'assume_zero'
c2 = self.add('comp2_%d'%i, component2())
self.connect('a_vals[%d]' % i, 'comp1_%d.a' % i)
self.connect('x', ['comp1_%d.x' % i, 'comp2_%d.x' % i])
self.connect('y', ['comp1_%d.y' % i, 'comp2_%d.y' % i])
self.connect('comp1_%d.term1' % i, 'comp2_%d.term1' % i)
self.connect('q_%d' % i, 'comp2_%d.q' % i)
self.connect('comp2_%d.f' % i, 'summer.fs[%d]' % i)
self.driver.workflow.add(['comp1_%d' % i, 'comp2_%d' % i])
# self.connect('summer.fs[:]', 'fs[:]')
self.driver.workflow.add(['summer'])
# set up main driver (optimizer)
self.driver.iprint = 1
self.driver.maxiter = 100
self.driver.accuracy = 1.0e-6
self.driver.add_parameter('x', low=-5., high=5.)
self.driver.add_parameter('y', low=0., high=5.)
for i in range(0, self.size):
self.driver.add_parameter('q_%d' % i, low=0., high=5.)
self.driver.add_objective('summer.total')
if __name__ == "__main__":
""" the result should be -1 at (x, y) = (-0.5, 0) """
import time
from openmdao.main.api import set_as_top
a_vals = np.array([1., 1., 1., 1.])
test = set_as_top(assembly(size=len(a_vals)))
test.a_vals = a_vals
print 'in main, test.a_vals = %s, test.fs = %s' % (test.a_vals, test.fs)
test.x = 2.
test.y = -5
q = np.tile(np.arange(1., 3.), (4, 1))
for i in range(0, len(a_vals)):
exec('test.q_%d = q[%d]' % (i, i))
exec('print test.q_%d' % i)
print test.q_0, test.q_1, test.q_2, test.q_3
tt = time.time()
test.run()
print "Elapsed time: ", time.time()-tt, "seconds"
print 'result = ', test.summer.total
print '(x, y) = (%s, %s)' % (test.x, test.y)
print 'fs = %s' % test.fs
print test.fs
for i in range(0, len(a_vals)):
exec('print test.q_%d' % i)
2 个解决方案
#1
1
So, I took a look at your model too, and you definitely aren't doing anything wrong. There is a bug in the model setup when it is assembling a network graph for the top optimization problem. It seems to lose the q
variable from the inputs and never allocates space for it in the vector that is used to solve for the total derivatives. I think it is confused about q
because it has no direct full connection to anything, just slice connections to the numbered comp2s
.
所以,我也看了你的模型,你肯定没有做错什么。在为最优优化问题装配网络图时,模型设置中存在一个缺陷。它似乎从输入中丢失了q变量,而没有为它在用于求解总导数的向量中分配空间。我认为它对q很困惑,因为它与任何东西都没有直接的完全连接,只是将连接与编号的comp2s连接起来。
Your first workaround is probably the best one. However, I also found another one. I created a dummy component called fakefake
; this component does nothing except allow you to directly connect the full q
vector to something. Then, I took its output fakefake.out
and used it in a constraint. Since that output never changes, the constraint is always satisfied. This workaround works because the full q
connection prevents the input from being erroneously removed from the graph during pruning.
你的第一个工作可能是最好的。然而,我也找到了另一个。我创建了一个虚拟组件fakefake;这个组件不做任何事情,只允许您直接将完整的q向量连接到某个东西。然后,我选择了它的输出fakefake。在一个约束条件下使用它。由于输出从不改变,约束总是满足的。这种方法是有效的,因为完整的q连接可以防止在修剪过程中错误地从图形中删除输入。
With these changes, i was able to get it to run. I am not sure if the answers are correct though, since I don't know what they are supposed to be. I have included my code below. Note, I also added derivatives for component2
and summer
.
有了这些变化,我就能让它运行起来。我不知道答案是否正确,因为我不知道它们应该是什么。我的代码如下。注意,我还为component2和summer添加了衍生工具。
from openmdao.main.api import Assembly, Component
from openmdao.lib.datatypes.api import Float, Array, List
from openmdao.lib.drivers.api import DOEdriver, SLSQPdriver, COBYLAdriver, CaseIteratorDriver
from pyopt_driver.pyopt_driver import pyOptDriver
import numpy as np
class component1(Component):
x = Float(iotype='in')
y = Float(iotype='in')
term1 = Float(iotype='out')
a = Float(iotype='in', default_value=1)
def execute(self):
x = self.x
a = self.a
term1 = a*x**2
self.term1 = term1
print "In comp1", self.name, self.a, self.x, self.term1
def list_deriv_vars(self):
return ('x',), ('term1',)
def provideJ(self):
x = self.x
a = self.a
dterm1_dx = 2.*a*x
J = np.array([[dterm1_dx]])
print 'In comp1, J = %s' % J
return J
class component2(Component):
x = Float(iotype='in')
y = Float(iotype='in')
term1 = Float(iotype='in')
q = Array(np.zeros(2), iotype='in', dtype='float')
f = Float(iotype='out')
def execute(self):
y = self.y + self.q[0]
x = self.x + self.q[1]
term1 = self.term1
f = term1 + x + y**2
print 'q = %s' % self.q
self.f = f
print "In comp2", self.name, self.x, self.y, self.term1, self.f
def list_deriv_vars(self):
return ('x', 'y', 'term1', 'q'), ('f',)
def provideJ(self):
# f = (y+q0)**2 + x + q1 + term1
df_dx = 1.0
df_dy = 2.0*self.y + 2.0*self.q[0]
df_dterm1 = 1.0
df_dq = np.array([2.0*self.q[0] + 2.0*self.y, 1.0])
J = np.array([[df_dx, df_dy, df_dterm1, df_dq[0], df_dq[1]]])
return J
class summer(Component):
total = Float(iotype='out', desc='sum of all f values')
def __init__(self, size):
super(summer, self).__init__()
self.size = size
self.add('fs', Array(np.zeros(size), iotype='in', desc='f values from all cases'))
def execute(self):
self.total = sum(self.fs)
print 'In summer, fs = %s and total = %s' % (self.fs, self.total)
def list_deriv_vars(self):
return ('fs',), ('total',)
def provideJ(self):
J = np.ones((1.0, len(self.fs)))
return J
class fakefake(Component):
out = Float(0.0, iotype='out')
def __init__(self, size):
super(fakefake, self).__init__()
self.size = size
self.add('q', Array(np.zeros(size), iotype='in', dtype='float'))
def execute(self):
pass
def list_deriv_vars(self):
return ('q',), ('out',)
def provideJ(self):
J = np.zeros((1.0, 2.0*len(self.q)))
return J
class assembly(Assembly):
x = Float(iotype='in')
y = Float(iotype='in')
total = Float(iotype='out')
def __init__(self, size):
super(assembly, self).__init__()
self.size = size
self.add('a_vals', Array(np.zeros(size), iotype='in', dtype='float'))
self.add('q', Array(np.zeros((size, 2)), iotype='in', dtype='float'))
self.add('fs', Array(np.zeros(size), iotype='out', dtype='float'))
print 'in init a_vals = %s, fs = %s' % (self.a_vals, self.fs)
def configure(self):
self.add('driver', SLSQPdriver())
# self.add('driver', pyOptDriver())
# self.driver.optimizer = 'SNOPT'
# self.driver.pyopt_diff = True
#create this first, so we can connect to it
self.add('summer', summer(size=len(self.a_vals)))
self.connect('summer.total', 'total')
# Trying something...
self.add('fakefake', fakefake(self.size))
self.connect('q', 'fakefake.q')
print 'in configure a_vals = %s' % self.a_vals
# create instances of components
for i in range(0, self.size):
c1 = self.add('comp1_%d' % i, component1())
c1.missing_deriv_policy = 'assume_zero'
c2 = self.add('comp2_%d'%i, component2())
self.connect('a_vals[%d]' % i, 'comp1_%d.a' % i)
self.connect('x', ['comp1_%d.x' % i, 'comp2_%d.x' % i])
self.connect('y', ['comp1_%d.y' % i, 'comp2_%d.y' % i])
self.connect('comp1_%d.term1' % i, 'comp2_%d.term1' % i)
#self.connect('q[%d, :]' % i, 'comp2_%d.q' % i)
#self.connect('q[%d]' % i, 'comp2_%d.q' % i)
self.connect('comp2_%d.f' % i, 'summer.fs[%d]' % i)
self.driver.workflow.add(['comp1_%d' % i, 'comp2_%d' % i])
# self.connect('summer.fs[:]', 'fs[:]')
self.driver.workflow.add(['summer'])
# set up main driver (optimizer)
self.driver.iprint = 1
self.driver.maxiter = 100
self.driver.accuracy = 1.0e-6
self.driver.add_parameter('x', low=-5., high=5.)
self.driver.add_parameter('y', low=-5., high=5.)
self.driver.add_parameter('q', low=0., high=5.)
#for i in range(0, self.size):
# self.driver.add_parameter('comp2_%d.q' % i, low=0., high=5.)
self.driver.add_objective('summer.total')
self.driver.add_constraint('fakefake.out < 1000')
if __name__ == "__main__":
""" the result should be -1 at (x, y) = (-0.5, 0) """
import time
from openmdao.main.api import set_as_top
a_vals = np.array([1., 1., 1., 1.])
test = set_as_top(assembly(size=len(a_vals)))
test.a_vals = a_vals
print 'in main, test.a_vals = %s, test.fs = %s' % (test.a_vals, test.fs)
test.x = 2.
test.y = -5
test.q = np.tile(np.arange(0., 2.), (4, 1))
print test.q
tt = time.time()
test.run()
print "Elapsed time: ", time.time()-tt, "seconds"
print 'result = ', test.summer.total
print '(x, y) = (%s, %s)' % (test.x, test.y)
print 'fs = %s' % test.fs
print test.fs
#2
1
I can get past the setup error by making a small change in the connection of q, to comp2_.q.
我可以通过在q和comp2_q .q的连接上做一个小小的改变来克服设置错误。
I go from:
我从:
self.connect('q[%d, :]' % i, 'comp2_%d.q' % i)
to:
:
self.connect('q[%d]' % i, 'comp2_%d.q' % i)
and then the problem runs through its first evaluation. Unfortunately it then does somewhere in the derivatives calculations. This happens even if I turn on SNOPT and use pyopt_diff=True. So something else in this toy problem is amiss. But removing the extra :
gets you past the connection error.
然后这个问题通过它的第一个评估。不幸的是,它会在衍生品计算中出现。即使我打开SNOPT并使用pyopt_diff=True,也会发生这种情况。所以在这个玩具问题上还有其他问题。但是删除额外的:使您通过连接错误。
#1
1
So, I took a look at your model too, and you definitely aren't doing anything wrong. There is a bug in the model setup when it is assembling a network graph for the top optimization problem. It seems to lose the q
variable from the inputs and never allocates space for it in the vector that is used to solve for the total derivatives. I think it is confused about q
because it has no direct full connection to anything, just slice connections to the numbered comp2s
.
所以,我也看了你的模型,你肯定没有做错什么。在为最优优化问题装配网络图时,模型设置中存在一个缺陷。它似乎从输入中丢失了q变量,而没有为它在用于求解总导数的向量中分配空间。我认为它对q很困惑,因为它与任何东西都没有直接的完全连接,只是将连接与编号的comp2s连接起来。
Your first workaround is probably the best one. However, I also found another one. I created a dummy component called fakefake
; this component does nothing except allow you to directly connect the full q
vector to something. Then, I took its output fakefake.out
and used it in a constraint. Since that output never changes, the constraint is always satisfied. This workaround works because the full q
connection prevents the input from being erroneously removed from the graph during pruning.
你的第一个工作可能是最好的。然而,我也找到了另一个。我创建了一个虚拟组件fakefake;这个组件不做任何事情,只允许您直接将完整的q向量连接到某个东西。然后,我选择了它的输出fakefake。在一个约束条件下使用它。由于输出从不改变,约束总是满足的。这种方法是有效的,因为完整的q连接可以防止在修剪过程中错误地从图形中删除输入。
With these changes, i was able to get it to run. I am not sure if the answers are correct though, since I don't know what they are supposed to be. I have included my code below. Note, I also added derivatives for component2
and summer
.
有了这些变化,我就能让它运行起来。我不知道答案是否正确,因为我不知道它们应该是什么。我的代码如下。注意,我还为component2和summer添加了衍生工具。
from openmdao.main.api import Assembly, Component
from openmdao.lib.datatypes.api import Float, Array, List
from openmdao.lib.drivers.api import DOEdriver, SLSQPdriver, COBYLAdriver, CaseIteratorDriver
from pyopt_driver.pyopt_driver import pyOptDriver
import numpy as np
class component1(Component):
x = Float(iotype='in')
y = Float(iotype='in')
term1 = Float(iotype='out')
a = Float(iotype='in', default_value=1)
def execute(self):
x = self.x
a = self.a
term1 = a*x**2
self.term1 = term1
print "In comp1", self.name, self.a, self.x, self.term1
def list_deriv_vars(self):
return ('x',), ('term1',)
def provideJ(self):
x = self.x
a = self.a
dterm1_dx = 2.*a*x
J = np.array([[dterm1_dx]])
print 'In comp1, J = %s' % J
return J
class component2(Component):
x = Float(iotype='in')
y = Float(iotype='in')
term1 = Float(iotype='in')
q = Array(np.zeros(2), iotype='in', dtype='float')
f = Float(iotype='out')
def execute(self):
y = self.y + self.q[0]
x = self.x + self.q[1]
term1 = self.term1
f = term1 + x + y**2
print 'q = %s' % self.q
self.f = f
print "In comp2", self.name, self.x, self.y, self.term1, self.f
def list_deriv_vars(self):
return ('x', 'y', 'term1', 'q'), ('f',)
def provideJ(self):
# f = (y+q0)**2 + x + q1 + term1
df_dx = 1.0
df_dy = 2.0*self.y + 2.0*self.q[0]
df_dterm1 = 1.0
df_dq = np.array([2.0*self.q[0] + 2.0*self.y, 1.0])
J = np.array([[df_dx, df_dy, df_dterm1, df_dq[0], df_dq[1]]])
return J
class summer(Component):
total = Float(iotype='out', desc='sum of all f values')
def __init__(self, size):
super(summer, self).__init__()
self.size = size
self.add('fs', Array(np.zeros(size), iotype='in', desc='f values from all cases'))
def execute(self):
self.total = sum(self.fs)
print 'In summer, fs = %s and total = %s' % (self.fs, self.total)
def list_deriv_vars(self):
return ('fs',), ('total',)
def provideJ(self):
J = np.ones((1.0, len(self.fs)))
return J
class fakefake(Component):
out = Float(0.0, iotype='out')
def __init__(self, size):
super(fakefake, self).__init__()
self.size = size
self.add('q', Array(np.zeros(size), iotype='in', dtype='float'))
def execute(self):
pass
def list_deriv_vars(self):
return ('q',), ('out',)
def provideJ(self):
J = np.zeros((1.0, 2.0*len(self.q)))
return J
class assembly(Assembly):
x = Float(iotype='in')
y = Float(iotype='in')
total = Float(iotype='out')
def __init__(self, size):
super(assembly, self).__init__()
self.size = size
self.add('a_vals', Array(np.zeros(size), iotype='in', dtype='float'))
self.add('q', Array(np.zeros((size, 2)), iotype='in', dtype='float'))
self.add('fs', Array(np.zeros(size), iotype='out', dtype='float'))
print 'in init a_vals = %s, fs = %s' % (self.a_vals, self.fs)
def configure(self):
self.add('driver', SLSQPdriver())
# self.add('driver', pyOptDriver())
# self.driver.optimizer = 'SNOPT'
# self.driver.pyopt_diff = True
#create this first, so we can connect to it
self.add('summer', summer(size=len(self.a_vals)))
self.connect('summer.total', 'total')
# Trying something...
self.add('fakefake', fakefake(self.size))
self.connect('q', 'fakefake.q')
print 'in configure a_vals = %s' % self.a_vals
# create instances of components
for i in range(0, self.size):
c1 = self.add('comp1_%d' % i, component1())
c1.missing_deriv_policy = 'assume_zero'
c2 = self.add('comp2_%d'%i, component2())
self.connect('a_vals[%d]' % i, 'comp1_%d.a' % i)
self.connect('x', ['comp1_%d.x' % i, 'comp2_%d.x' % i])
self.connect('y', ['comp1_%d.y' % i, 'comp2_%d.y' % i])
self.connect('comp1_%d.term1' % i, 'comp2_%d.term1' % i)
#self.connect('q[%d, :]' % i, 'comp2_%d.q' % i)
#self.connect('q[%d]' % i, 'comp2_%d.q' % i)
self.connect('comp2_%d.f' % i, 'summer.fs[%d]' % i)
self.driver.workflow.add(['comp1_%d' % i, 'comp2_%d' % i])
# self.connect('summer.fs[:]', 'fs[:]')
self.driver.workflow.add(['summer'])
# set up main driver (optimizer)
self.driver.iprint = 1
self.driver.maxiter = 100
self.driver.accuracy = 1.0e-6
self.driver.add_parameter('x', low=-5., high=5.)
self.driver.add_parameter('y', low=-5., high=5.)
self.driver.add_parameter('q', low=0., high=5.)
#for i in range(0, self.size):
# self.driver.add_parameter('comp2_%d.q' % i, low=0., high=5.)
self.driver.add_objective('summer.total')
self.driver.add_constraint('fakefake.out < 1000')
if __name__ == "__main__":
""" the result should be -1 at (x, y) = (-0.5, 0) """
import time
from openmdao.main.api import set_as_top
a_vals = np.array([1., 1., 1., 1.])
test = set_as_top(assembly(size=len(a_vals)))
test.a_vals = a_vals
print 'in main, test.a_vals = %s, test.fs = %s' % (test.a_vals, test.fs)
test.x = 2.
test.y = -5
test.q = np.tile(np.arange(0., 2.), (4, 1))
print test.q
tt = time.time()
test.run()
print "Elapsed time: ", time.time()-tt, "seconds"
print 'result = ', test.summer.total
print '(x, y) = (%s, %s)' % (test.x, test.y)
print 'fs = %s' % test.fs
print test.fs
#2
1
I can get past the setup error by making a small change in the connection of q, to comp2_.q.
我可以通过在q和comp2_q .q的连接上做一个小小的改变来克服设置错误。
I go from:
我从:
self.connect('q[%d, :]' % i, 'comp2_%d.q' % i)
to:
:
self.connect('q[%d]' % i, 'comp2_%d.q' % i)
and then the problem runs through its first evaluation. Unfortunately it then does somewhere in the derivatives calculations. This happens even if I turn on SNOPT and use pyopt_diff=True. So something else in this toy problem is amiss. But removing the extra :
gets you past the connection error.
然后这个问题通过它的第一个评估。不幸的是,它会在衍生品计算中出现。即使我打开SNOPT并使用pyopt_diff=True,也会发生这种情况。所以在这个玩具问题上还有其他问题。但是删除额外的:使您通过连接错误。