通过设置Keras的Tensorflow后端的全局变量达到。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
import os
import tensorflow as tf
import keras.backend.tensorflow_backend as KTF
def get_session(gpu_fraction = 0.3 ):
'''Assume that you have 6GB of GPU memory and want to allocate ~2GB'''
num_threads = os.environ.get( 'OMP_NUM_THREADS' )
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = gpu_fraction)
if num_threads:
return tf.Session(config = tf.ConfigProto(
gpu_options = gpu_options, intra_op_parallelism_threads = num_threads))
else :
return tf.Session(config = tf.ConfigProto(gpu_options = gpu_options))
|
使用过程中显示的设置session:
import keras.backend.tensorflow_backend as KTF
KTF.set_session(get_session())
补充知识:限制tensorflow的运行内存 (keras.backend.tensorflow)
我就废话不多说了,大家还是直接看代码吧!
1
2
3
4
5
6
|
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5 #half of the memory
set_session(tf.Session(config = config))
|
以上这篇Keras设定GPU使用内存大小方式(Tensorflow backend)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/u013066730/article/details/77510033